Recent decline in the global land evapotranspiration trend due to limited moisture supply

蒸散量 水循环 环境科学 气候变化 全球变暖 降水 潜在蒸发 全球变化 土地利用、土地利用的变化和林业 气候学 大气科学 土地利用 气象学 地理 地质学 生态学 海洋学 生物
作者
Martin Jung,Markus Reichstein,Philippe Ciais,Sonia I. Seneviratne,Justin Sheffield,Michael L. Goulden,Gordon B. Bonan,Alessandro Cescatti,Jiquan Chen,Richard de Jeu,A. J. Dolman,Werner Eugster,Dieter Gerten,Damiano Gianelle,Nadine Gobron,Jens Heinke,John S. Kimball,B. E. Law,Leonardo Montagnani,Qiaozhen Mu,Brigitte Mueller,Keith W. Oleson,Dario Papale,Andrew D. Richardson,Olivier Roupsard,S. W. Running,Enrico Tomelleri,Nicolas Viovy,Ulrich Weber,C. A. Williams,Eric F. Wood,Sönke Zaehle,Ke Zhang
出处
期刊:Nature [Nature Portfolio]
卷期号:467 (7318): 951-954 被引量:1763
标识
DOI:10.1038/nature09396
摘要

An acceleration of the global hydrological cycle, evapotranspiration included, is regarded as a key indicator of the impact of global warming on Earth's system. Evapotranspiration refers to the water that moves from Earth's land surface to the atmosphere through the combined effects of evaporation and plant transpiration. Martin Jung and colleagues use a data-driven machine-learning technique and a suite of process-based models to show that, between 1982 and 1997, evapotranspiration increased steadily with global warming. But since 1998, the increasing trend has flattened, probably as a result of limitations in soil-moisture supply in the Southern Hemisphere — particularly Africa and Australia. It remains to be seen whether this is part of a natural climate variation or a climate-change signal in which land evapotranspiration becomes more supply-limited in the long term. Climate change is expected to intensify the global hydrological cycle and to alter evapotranspiration, but direct observational constraints are lacking at the global scale. Now a data-driven, machine-learning technique and a suite of process-based models have been used to show that from 1982 to 1997 global evapotranspiration increased by about 7.1 millimetres per year per decade. But since 1998 this increase has ceased, probably because of moisture limitation in the Southern Hemisphere. More than half of the solar energy absorbed by land surfaces is currently used to evaporate water1. Climate change is expected to intensify the hydrological cycle2 and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land—a key diagnostic criterion of the effects of climate change and variability—remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network3, meteorological and remote-sensing observations, and a machine-learning algorithm4. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1 ± 1.0 millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Niño event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
源源完成签到 ,获得积分10
1秒前
1秒前
留猪完成签到,获得积分10
4秒前
科研通AI5应助gb采纳,获得10
4秒前
外向访卉发布了新的文献求助10
7秒前
张一二二二完成签到,获得积分10
7秒前
科研通AI5应助伶俐如冰采纳,获得10
13秒前
16秒前
李健的小迷弟应助雨衣采纳,获得10
17秒前
无花果应助骄阳似我采纳,获得10
18秒前
zzz完成签到,获得积分10
19秒前
19秒前
20秒前
传奇3应助逍遥采纳,获得10
20秒前
开心的兔子完成签到,获得积分20
21秒前
zzz发布了新的文献求助20
23秒前
肖肖肖完成签到,获得积分10
23秒前
Eva完成签到,获得积分10
24秒前
azhu发布了新的文献求助10
24秒前
SciGPT应助活力的妙菡采纳,获得10
25秒前
修好世界发布了新的文献求助10
25秒前
充电宝应助lz采纳,获得10
25秒前
caresse驳回了Owen应助
27秒前
27秒前
29秒前
摸鱼的小y完成签到,获得积分10
29秒前
肖肖肖发布了新的文献求助10
30秒前
feng完成签到,获得积分10
32秒前
ludy发布了新的文献求助10
32秒前
33秒前
34秒前
36秒前
36秒前
NexusExplorer应助科研通管家采纳,获得10
36秒前
36秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
36秒前
Ava应助博修采纳,获得10
36秒前
37秒前
领导范儿应助无私逊采纳,获得10
37秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839942
求助须知:如何正确求助?哪些是违规求助? 3382171
关于积分的说明 10521705
捐赠科研通 3101645
什么是DOI,文献DOI怎么找? 1708201
邀请新用户注册赠送积分活动 822311
科研通“疑难数据库(出版商)”最低求助积分说明 773235