同色链霉菌
生物
群体感应
次生代谢
链霉菌
基因
生物合成
受体
发起人
生物化学
遗传学
基因表达
细菌
毒力
作者
Juan Wang,Weishan Wang,Linqi Wang,Guifeng Zhang,Keqiang Fan,Huarong Tan,Keqian Yang
标识
DOI:10.1111/j.1365-2958.2011.07811.x
摘要
Summary In streptomycetes, a quorum‐sensing mechanism mediated by γ‐butyrolactones (GBLs) and their cognate receptors was known to trigger secondary metabolism and morphological differentiation. However, many aspects on the control of GBL signal production are not understood. In this work, we report that ScbR2, the pseudo GBL receptor in Streptomyces coelicolor , negatively controls the biosynthesis of γ‐butyrolactone (SCB1) by directly repressing the transcription of scbA , which encodes the key enzyme for SCB1 biosynthesis. Similarly, the pseudo GBL receptor JadR2 in Streptomyces venezuelae was shown to repress the expression of jadW1 , which also encodes the putative GBL synthase. These regulatory relationships were verified in Escherichia coli using lux ‐based reporter constructs. Additionally, the temporal expression profiles of scbA , scbR2 and scbR (receptor gene for SCB1) were examined in Streptomyces coelicolor , which showed the sequential expression of ScbR/R2 regulators in the control of SCB1 production. Overall, our results clearly demonstrated that pseudo GBL receptors play a novel role in controlling GBL biosynthesis in streptomycetes. As ScbR/R2 homologues and their binding sites upstream of GBL synthase genes are commonly found in Streptomyces species, and ScbR2 homologues cross‐recognize each other's target promoters, the ScbA/R/R2 quorum‐sensing regulatory system appears to represent an evolutionarily conserved signal control mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI