氮氧化物1
氮氧化物4
NADPH氧化酶
超氧化物
化学
活性氧
化学发光
生物化学
荧光素
一氧化氮
P22phox公司
分子生物学
酶
生物
有机化学
作者
Flávia Rezende,Oliver Löwe,Valeska Helfinger,Kim-Kristin Prior,Maria Walter,Sven Zukunft,Ingrid Fleming,Norbert Weißmann,Ralf P. Brandes,Katrin Schröder
标识
DOI:10.1089/ars.2015.6314
摘要
NADPH oxidases of the Nox family are considered important sources of cellular reactive oxygen species (ROS) production. This conclusion is, in part, based on the ability of NADPH to elicit a chemiluminescence signal in tissue/cell homogenates or membrane preparations in the presence of enhancers such as lucigenin, luminol, or L012. However, the ability of these particular assays to specifically detect Nox activity and Nox-derived ROS has not been proven. In this study, we demonstrate that combined knockout of the three main Nox enzymes of the mouse (Nox1-Nox2-Nox4 triple knockout) had no impact on NADPH-stimulated chemiluminescence signals in the aorta, heart, and kidney homogenates. In the NADPH-stimulated membrane assays, no effect of in vivo angiotensin II pretreatment or deletion of Nox enzymes was observed. In in vitro studies in HEK293 cells, the overexpression of Nox5 or Nox4 markedly increased ROS production in intact cells, whereas overexpression of Nox5 or Nox4 had no influence on the signal in membrane assays. In contrast, overexpression of nitric oxide synthase or cytochrome P450 enzymes resulted in an increased chemiluminescence signal in isolated membranes. On the basis of these observations, we propose the hypothesis that NADPH-stimulated chemiluminescence-based membrane assays, as currently used, do not reflect Nox activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI