Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range

估计员 样本量测定 四分位数 标准差 统计 经验法则 样品(材料) 航程(航空) 计算机科学 标准误差 计量经济学 数学 算法 置信区间 化学 材料科学 色谱法 复合材料
作者
Dehui Luo,Xiang Wan,Jiming Liu,Tiejun Tong
出处
期刊:Statistical Methods in Medical Research [SAGE Publishing]
卷期号:27 (6): 1785-1805 被引量:2294
标识
DOI:10.1177/0962280216669183
摘要

The era of big data is coming, and evidence-based medicine is attracting increasing attention to improve decision making in medical practice via integrating evidence from well designed and conducted clinical research. Meta-analysis is a statistical technique widely used in evidence-based medicine for analytically combining the findings from independent clinical trials to provide an overall estimation of a treatment effectiveness. The sample mean and standard deviation are two commonly used statistics in meta-analysis but some trials use the median, the minimum and maximum values, or sometimes the first and third quartiles to report the results. Thus, to pool results in a consistent format, researchers need to transform those information back to the sample mean and standard deviation. In this article, we investigate the optimal estimation of the sample mean for meta-analysis from both theoretical and empirical perspectives. A major drawback in the literature is that the sample size, needless to say its importance, is either ignored or used in a stepwise but somewhat arbitrary manner, e.g. the famous method proposed by Hozo et al. We solve this issue by incorporating the sample size in a smoothly changing weight in the estimators to reach the optimal estimation. Our proposed estimators not only improve the existing ones significantly but also share the same virtue of the simplicity. The real data application indicates that our proposed estimators are capable to serve as “rules of thumb” and will be widely applied in evidence-based medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yizili完成签到,获得积分20
1秒前
科研通AI5应助南宫萍采纳,获得10
2秒前
2秒前
4秒前
4秒前
我剑也未尝不利应助小刘采纳,获得20
5秒前
雅雅发布了新的文献求助10
7秒前
兮pqsn发布了新的文献求助10
8秒前
Jason完成签到 ,获得积分10
9秒前
景碧空完成签到,获得积分10
9秒前
9秒前
渠安完成签到 ,获得积分10
9秒前
少年完成签到,获得积分10
11秒前
11秒前
小马甲应助Pt-SACs采纳,获得10
12秒前
俞璐发布了新的文献求助10
12秒前
景碧空发布了新的文献求助10
13秒前
今天只做一件事应助daidai采纳,获得10
14秒前
Owen应助紫色奶萨采纳,获得10
14秒前
15秒前
hhh发布了新的文献求助10
15秒前
SunnyZjw发布了新的文献求助10
18秒前
19秒前
自觉紫安发布了新的文献求助10
19秒前
科研通AI5应助zyc采纳,获得10
19秒前
冷傲山彤完成签到,获得积分10
19秒前
dreamsci完成签到 ,获得积分10
26秒前
Owen应助酸萝卜采纳,获得10
26秒前
脑洞疼应助自觉紫安采纳,获得10
27秒前
28秒前
34秒前
大模型应助tcf采纳,获得10
34秒前
35秒前
36秒前
39秒前
41秒前
41秒前
41秒前
酸萝卜完成签到,获得积分10
41秒前
彭于晏应助雅雅采纳,获得10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669