Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range

估计员 样本量测定 四分位数 标准差 统计 经验法则 样品(材料) 航程(航空) 计算机科学 标准误差 计量经济学 数学 算法 置信区间 色谱法 复合材料 化学 材料科学
作者
Dehui Luo,Xiang Wan,Jiming Liu,Tiejun Tong
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:27 (6): 1785-1805 被引量:3311
标识
DOI:10.1177/0962280216669183
摘要

The era of big data is coming, and evidence-based medicine is attracting increasing attention to improve decision making in medical practice via integrating evidence from well designed and conducted clinical research. Meta-analysis is a statistical technique widely used in evidence-based medicine for analytically combining the findings from independent clinical trials to provide an overall estimation of a treatment effectiveness. The sample mean and standard deviation are two commonly used statistics in meta-analysis but some trials use the median, the minimum and maximum values, or sometimes the first and third quartiles to report the results. Thus, to pool results in a consistent format, researchers need to transform those information back to the sample mean and standard deviation. In this article, we investigate the optimal estimation of the sample mean for meta-analysis from both theoretical and empirical perspectives. A major drawback in the literature is that the sample size, needless to say its importance, is either ignored or used in a stepwise but somewhat arbitrary manner, e.g. the famous method proposed by Hozo et al. We solve this issue by incorporating the sample size in a smoothly changing weight in the estimators to reach the optimal estimation. Our proposed estimators not only improve the existing ones significantly but also share the same virtue of the simplicity. The real data application indicates that our proposed estimators are capable to serve as “rules of thumb” and will be widely applied in evidence-based medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助研友_7ZeNx8采纳,获得10
刚刚
加菲丰丰应助霸气咖啡豆采纳,获得30
刚刚
科研通AI2S应助霸气咖啡豆采纳,获得10
刚刚
浮游应助霸气咖啡豆采纳,获得10
刚刚
所所应助可乐采纳,获得10
1秒前
Zola发布了新的文献求助10
1秒前
1秒前
科研通AI6应助juanjie采纳,获得10
2秒前
2秒前
LL发布了新的文献求助10
2秒前
3秒前
4秒前
武子阳完成签到 ,获得积分10
5秒前
Ruby发布了新的文献求助10
6秒前
学术小白发布了新的文献求助10
6秒前
7秒前
今后应助戴佳伟彩笔采纳,获得10
7秒前
7秒前
快乐科研完成签到,获得积分10
9秒前
9秒前
9秒前
夏咲咏完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
hanyu完成签到,获得积分10
11秒前
gdgk发布了新的文献求助10
12秒前
Viper3发布了新的文献求助10
13秒前
SciGPT应助夏咲咏采纳,获得10
13秒前
13秒前
13秒前
无限靖荷发布了新的文献求助10
14秒前
轻风完成签到,获得积分10
14秒前
15秒前
招财进堡完成签到,获得积分10
16秒前
hh发布了新的文献求助10
17秒前
悦耳易云发布了新的文献求助30
17秒前
研友_LJaXX8发布了新的文献求助10
17秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388971
求助须知:如何正确求助?哪些是违规求助? 4511331
关于积分的说明 14038247
捐赠科研通 4422151
什么是DOI,文献DOI怎么找? 2429081
邀请新用户注册赠送积分活动 1421628
关于科研通互助平台的介绍 1400767