清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Drug-likeness Analysis of Traditional Chinese Medicines: Prediction of Drug-likeness Using Machine Learning Approaches

朴素贝叶斯分类器 人工智能 试验装置 药品 分类器(UML) 机器学习 计算机科学 分子描述符 贝叶斯概率 指纹(计算) 训练集 交叉验证 集合(抽象数据类型) 数据挖掘 数量结构-活动关系 模式识别(心理学) 支持向量机 医学 药理学 程序设计语言
作者
Sheng Tian,Junmei Wang,Youyong Li,Xiaojie Xu,Tingjun Hou
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:9 (10): 2875-2886 被引量:109
标识
DOI:10.1021/mp300198d
摘要

Quantitative or qualitative characterization of the drug-like features of known drugs may help medicinal and computational chemists to select higher quality drug leads from a huge pool of compounds and to improve the efficiency of drug design pipelines. For this purpose, the theoretical models for drug-likeness to discriminate between drug-like and non-drug-like based on molecular physicochemical properties and structural fingerprints were developed by using the naive Bayesian classification (NBC) and recursive partitioning (RP) techniques, and then the drug-likeness of the compounds from the Traditional Chinese Medicine Compound Database (TCMCD) was evaluated. First, the impact of molecular physicochemical properties and structural fingerprints on the prediction accuracy of drug-likeness was examined. We found that, compared with simple molecular properties, structural fingerprints were more essential for the accurate prediction of drug-likeness. Then, a variety of Bayesian classifiers were constructed by changing the ratio of drug-like to non-drug-like molecules and the size of the training set. The results indicate that the prediction accuracy of the Bayesian classifiers was closely related to the size and the degree of the balance of the training set. When a balanced training set was used, the best Bayesian classifier based on 21 physicochemical properties and the LCFP_6 fingerprint set yielded an overall leave-one-out (LOO) cross-validated accuracy of 91.4% for the 140,000 molecules in the training set and 90.9% for the 40,000 molecules in the test set. In addition, the RP classifiers with different maximum depth were constructed and compared with the Bayesian classifiers, and we found that the best Bayesian classifier outperformed the best RP model with respect to overall prediction accuracy. Moreover, the Bayesian classifier employing structural fingerprints highlights the important substructures favorable or unfavorable for drug-likeness, offering extra valuable information for getting high quality lead compounds in the early stage of the drug design/discovery process. Finally, the best Bayesian classifier was used to predict the drug-likeness of 33,961 compounds in TCMCD. Our calculations show that 59.37% of the molecules in TCMCD were identified as drug-like molecules, indicating that traditional Chinese medicines (TCMs) are therefore an excellent source of drug-like molecules. Furthermore, the important structural fingerprints in TCMCD were detected and analyzed. Considering that the pharmacology of TCMCD and MDDR (MDL Drug Data Report) was linked by the important common structural features, the potential pharmacology of the compounds in TCMCD may therefore be annotated by these important structural signatures identified from Bayesian analysis, which may be valuable to promote the development of TCMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bookgg完成签到 ,获得积分10
4秒前
kfwxz2022完成签到,获得积分10
10秒前
XXF完成签到,获得积分10
12秒前
John完成签到 ,获得积分10
15秒前
16秒前
guhao完成签到 ,获得积分10
17秒前
wushuimei完成签到 ,获得积分10
20秒前
小文殊发布了新的文献求助10
21秒前
蔡勇强完成签到 ,获得积分10
31秒前
33秒前
momo完成签到,获得积分10
34秒前
温梦花雨完成签到 ,获得积分10
35秒前
Tina酱完成签到 ,获得积分10
36秒前
37秒前
Ava应助小文殊采纳,获得10
41秒前
青山见秋发布了新的文献求助20
42秒前
碧蓝青梦发布了新的文献求助10
56秒前
cdercder应助Zhangqg采纳,获得10
1分钟前
1分钟前
爆米花应助碧蓝青梦采纳,获得10
1分钟前
duxh123完成签到 ,获得积分10
1分钟前
ARIA完成签到 ,获得积分10
1分钟前
无幻完成签到 ,获得积分10
1分钟前
赘婿应助Zhangqg采纳,获得10
1分钟前
YYYYYY完成签到,获得积分10
1分钟前
北笙完成签到 ,获得积分10
1分钟前
jimi完成签到 ,获得积分10
1分钟前
1分钟前
cdercder应助科研通管家采纳,获得20
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
1分钟前
chun123发布了新的文献求助10
1分钟前
赘婿应助chun123采纳,获得10
1分钟前
二行完成签到 ,获得积分10
2分钟前
apple给apple的求助进行了留言
2分钟前
大可完成签到 ,获得积分10
2分钟前
玉yu完成签到 ,获得积分10
2分钟前
chun123完成签到,获得积分10
2分钟前
2分钟前
Lz555完成签到 ,获得积分10
2分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827356
求助须知:如何正确求助?哪些是违规求助? 3369656
关于积分的说明 10456706
捐赠科研通 3089294
什么是DOI,文献DOI怎么找? 1699846
邀请新用户注册赠送积分活动 817520
科研通“疑难数据库(出版商)”最低求助积分说明 770251