IL13Pred: A method for predicting immunoregulatory cytokine IL-13 inducing peptides

白细胞介素13 免疫系统 计算生物学 细胞因子 计算机科学 人工智能 机器学习 白细胞介素 医学 生物 免疫学
作者
Shipra Jain,Anjali Dhall,Sumeet Patiyal,Gajendra P. S. Raghava
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:143: 105297-105297 被引量:44
标识
DOI:10.1016/j.compbiomed.2022.105297
摘要

Interleukin 13 (IL-13) is an immunoregulatory cytokine, primarily released by activated T-helper 2 cells. IL-13 induces the pathogenesis of many allergic diseases, such as airway hyperresponsiveness, glycoprotein hypersecretion, and goblet cell hyperplasia. In addition, IL-13 inhibits tumor immunosurveillance, leading to carcinogenesis. Since elevated IL-13 serum levels are severe in COVID-19 patients, predicting IL-13 inducing peptides or regions in a protein is vital to designing safe protein therapeutics particularly immunotherapeutic.The present study describes a method to develop, predict, design, and scan IL-13 inducing peptides.The dataset experimentally validated 313 IL-13 inducing peptides, and 2908 non-inducing homo-sapiens peptides extracted from the immune epitope database (IEDB). A total of 95 key features using the linear support vector classifier with the L1 penalty (SVC-L1) technique was extracted from the originally generated 9165 features using Pfeature. These key features were ranked based on their prediction ability, and the top 10 features were used to build machine learning prediction models. Various machine learning techniques were deployed to develop models for predicting IL-13 inducing peptides. These models were trained, tested, and evaluated using five-fold cross-validation techniques; the best model was evaluated on an independent dataset.Our best model based on XGBoost achieves a maximum AUC of 0.83 and 0.80 on the training and independent dataset, respectively. Our analysis indicates that certain SARS-COV2 variants are more prone to induce IL-13 in COVID-19 patients.The best performing model was incorporated in web-server and standalone package named 'IL-13Pred' for precise prediction of IL-13 inducing peptides. For large dataset analysis standalone package of IL-13Pred is available at (https://webs.iiitd.edu.in/raghava/il13pred/) webserver and over GitHub link: https://github.com/raghavagps/il13pred.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alex发布了新的文献求助10
1秒前
记得吃蔬菜完成签到,获得积分10
1秒前
科研通AI6应助睡醒了采纳,获得10
1秒前
小杨完成签到 ,获得积分10
1秒前
1秒前
Elaine发布了新的文献求助10
1秒前
感谢lzw转发科研通微信,获得积分50
1秒前
干净冬莲完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
是你完成签到,获得积分10
5秒前
5秒前
无花果应助dyjjudy采纳,获得10
5秒前
Freening完成签到,获得积分10
6秒前
人人人发布了新的文献求助10
6秒前
taysun发布了新的文献求助10
7秒前
7秒前
冷静的弼发布了新的文献求助10
7秒前
传奇3应助NIUB采纳,获得10
7秒前
感谢陶沟转发科研通微信,获得积分50
7秒前
小杭76应助msl2023采纳,获得10
8秒前
英俊的铭应助Elaine采纳,获得10
8秒前
95发布了新的文献求助10
9秒前
Steven应助kids采纳,获得10
9秒前
阿瓦达啃大瓜完成签到,获得积分10
10秒前
感谢lvtian转发科研通微信,获得积分50
12秒前
12秒前
可研完成签到,获得积分10
13秒前
852应助Meng采纳,获得10
13秒前
asasd完成签到,获得积分10
14秒前
14秒前
14秒前
单纯青雪发布了新的文献求助10
17秒前
真的找不到文献救救我完成签到,获得积分10
17秒前
ziwei完成签到,获得积分10
18秒前
19秒前
taysun完成签到 ,获得积分10
20秒前
杨鹏展完成签到,获得积分20
20秒前
dyjjudy发布了新的文献求助10
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342693
求助须知:如何正确求助?哪些是违规求助? 4478514
关于积分的说明 13939615
捐赠科研通 4375193
什么是DOI,文献DOI怎么找? 2404016
邀请新用户注册赠送积分活动 1396569
关于科研通互助平台的介绍 1368768