Advances in Computational Intelligence of Polymer Composite Materials: Machine Learning Assisted Modeling, Analysis and Design

过度拟合 航空航天 计算机科学 维数之咒 可靠性(半导体) 机器学习 可解释性 人工智能 航空航天工程 工程类 人工神经网络 功率(物理) 物理 量子力学
作者
Aanchna Sharma,T. Mukhopadhyay,Sanjay Mavinkere Rangappa,Suchart Siengchin,Vinod Kushvaha
出处
期刊:Archives of Computational Methods in Engineering [Springer Science+Business Media]
卷期号:29 (5): 3341-3385 被引量:156
标识
DOI:10.1007/s11831-021-09700-9
摘要

The superior multi-functional properties of polymer composites have made them an ideal choice for aerospace, automobile, marine, civil, and many other technologically demanding industries. The increasing demand of these composites calls for an extensive investigation of their physical, chemical and mechanical behavior under different exposure conditions. Machine learning (ML) has been recognized as a powerful predictive tool for data-driven multi-physical modeling, leading to unprecedented insights and exploration of the system properties beyond the capability of traditional computational and experimental analyses. Here we aim to abridge the findings of the large volume of relevant literature and highlight the broad spectrum potential of ML in applications like prediction, optimization, feature identification, uncertainty quantification, reliability and sensitivity analysis along with the framework of different ML algorithms concerning polymer composites. Challenges like the curse of dimensionality, overfitting, noise and mixed variable problems are discussed, including the latest advancements in ML that have the potential to be integrated in the field of polymer composites. Based on the extensive literature survey, a few recommendations on the exploitation of various ML algorithms for addressing different critical problems concerning polymer composites are provided along with insightful perspectives on the potential directions of future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangdamiao发布了新的文献求助10
刚刚
领导范儿应助QINGSHAN采纳,获得10
1秒前
1秒前
充电宝应助zzz采纳,获得10
2秒前
科目三应助王德俊采纳,获得10
2秒前
ye关注了科研通微信公众号
3秒前
漆漆完成签到,获得积分10
4秒前
橙子发布了新的文献求助10
5秒前
苏科完成签到,获得积分10
5秒前
6秒前
一二发布了新的文献求助30
8秒前
8秒前
9秒前
兔图图发布了新的文献求助10
9秒前
9秒前
Owen应助苏科采纳,获得10
11秒前
12秒前
13秒前
16秒前
16秒前
sugkook发布了新的文献求助10
17秒前
19秒前
19秒前
19秒前
pl656发布了新的文献求助10
20秒前
Jasonzhang完成签到,获得积分10
20秒前
zxx发布了新的文献求助10
21秒前
21秒前
eric888应助眼睛大的酒窝采纳,获得10
22秒前
22秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
喵喵完成签到 ,获得积分10
24秒前
25秒前
碧蓝白玉完成签到,获得积分10
25秒前
滴滴哒发布了新的文献求助10
26秒前
可爱的函函应助11采纳,获得10
26秒前
xinyue发布了新的文献求助10
26秒前
27秒前
老实惊蛰发布了新的文献求助10
28秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867484
求助须知:如何正确求助?哪些是违规求助? 3409836
关于积分的说明 10665243
捐赠科研通 3134009
什么是DOI,文献DOI怎么找? 1728786
邀请新用户注册赠送积分活动 833077
科研通“疑难数据库(出版商)”最低求助积分说明 780560