Ensemble machine learning model identifies patients with HFpEF from matrix-related plasma biomarkers

射血分数保留的心力衰竭 接收机工作特性 心脏病学 内科学 医学 心力衰竭 机器学习 心室 人工智能 射血分数 左心室肥大 人口 计算机科学 血压 环境卫生
作者
Michael M. Ward,Amirreza Yeganegi,Catalin F. Baicu,Amy D. Bradshaw,Francis G. Spinale,Michael R. Zile,William J. Richardson
出处
期刊:American Journal of Physiology-heart and Circulatory Physiology [American Physical Society]
卷期号:322 (5): H798-H805 被引量:8
标识
DOI:10.1152/ajpheart.00497.2021
摘要

Arterial hypertension can lead to structural changes within the heart including left ventricular hypertrophy (LVH) and eventually heart failure with preserved ejection fraction (HFpEF). The initial diagnosis of HFpEF is costly and generally based on later stage remodeling; thus, improved predictive diagnostic tools offer potential clinical benefit. Recent work has shown predictive value of multibiomarker plasma panels for the classification of patients with LVH and HFpEF. We hypothesized that machine learning algorithms could substantially improve the predictive value of circulating plasma biomarkers by leveraging more sophisticated statistical approaches. In this work, we developed an ensemble classification algorithm for the diagnosis of HFpEF within a population of 480 individuals including patients with HFpEF, patients with LVH, and referent control patients. Algorithms showed strong diagnostic performance with receiver-operating-characteristic curve (ROC) areas of 0.92 for identifying patients with LVH and 0.90 for identifying patients with HFpEF using demographic information, plasma biomarkers related to extracellular matrix remodeling, and echocardiogram data. More impressively, the ensemble algorithm produced an ROC area of 0.88 for HFpEF diagnosis using only demographic and plasma panel data. Our findings demonstrate that machine learning-based classification algorithms show promise as a noninvasive diagnostic tool for HFpEF, while also suggesting priority biomarkers for future mechanistic studies to elucidate more specific regulatory roles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lilivite应助兴奋柜子采纳,获得10
2秒前
2秒前
miss完成签到,获得积分10
4秒前
4秒前
完美世界应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
婷婷小笑应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
6秒前
七慕凉应助科研通管家采纳,获得20
6秒前
烟花应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
zho应助科研通管家采纳,获得10
6秒前
lllshh完成签到,获得积分10
7秒前
单薄的竺发布了新的文献求助10
8秒前
侦察兵发布了新的文献求助10
8秒前
8秒前
9秒前
xxx发布了新的文献求助30
9秒前
干亿先完成签到 ,获得积分10
10秒前
科研通AI5应助budingman采纳,获得10
12秒前
12秒前
13秒前
科研通AI5应助Wangyingjie5采纳,获得10
14秒前
15秒前
丘比特应助不喜采纳,获得10
16秒前
阔达鸿涛发布了新的文献求助10
16秒前
xxx发布了新的文献求助10
18秒前
18秒前
20秒前
22秒前
gungun完成签到,获得积分10
22秒前
慕青应助2025zmx采纳,获得10
23秒前
加油干完成签到 ,获得积分10
24秒前
25秒前
852应助橙橙橙采纳,获得10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798182
求助须知:如何正确求助?哪些是违规求助? 3343631
关于积分的说明 10317044
捐赠科研通 3060341
什么是DOI,文献DOI怎么找? 1679497
邀请新用户注册赠送积分活动 806627
科研通“疑难数据库(出版商)”最低求助积分说明 763282