压痕硬度
特征选择
随机森林
熵(时间箭头)
机器学习
人工智能
计算机科学
主成分分析
理论(学习稳定性)
高熵合金
电流(流体)
算法
数据挖掘
模式识别(心理学)
材料科学
工程类
微观结构
冶金
物理
量子力学
电气工程
作者
Amit Singh Bundela,M.R. Rahul
标识
DOI:10.1016/j.jallcom.2022.164578
摘要
Prediction of properties of new compositions will accelerate the material design and development. The current study uses a machine learning framework to predict the microhardness of high entropy alloys. Several feature selection algorithms are used to identify the essential material descriptors. The stability selection algorithm gives optimum material descriptors for the current dataset for the microhardness prediction. Eight different machine learning algorithms are trained and tested for microhardness prediction. The accuracy of prediction improved by reducing the higher-dimensional data to lower dimensions using principal component analysis. The current study shows the testing R2 score of more than 0.89 for XGBoost, Random forest, and Bagging regressor algorithms. Experimental data confirms the applicability of various trained algorithms for property prediction, and for the current study, ANN shows better performance for the new experimental data.
科研通智能强力驱动
Strongly Powered by AbleSci AI