电解质
阳极
法拉第效率
金属锂
材料科学
电池(电)
离子液体
电化学
电化学窗口
锂(药物)
快离子导体
化学工程
锂离子电池
相(物质)
锂电池
纳米技术
离子键合
电极
离子
离子电导率
化学
热力学
催化作用
有机化学
物理化学
物理
工程类
功率(物理)
内分泌学
医学
作者
Rui Guo,Gustavo M. Hobold,Betar M. Gallant
标识
DOI:10.1016/j.cossms.2021.100973
摘要
Solid state battery (SSB) performance is largely governed by processes occurring at electrolyte–electrode interfaces. At the Li metal anode, where the overwhelming majority of solid electrolyte (SE) are unstable against Li metal, the interface can readily react to form emergent Li-solid electrolyte interphases (SEI) with ionic, electronic, chemical, mechanical, and electrochemical properties substantially distinct from the parent phase. Facing similar challenges with liquid electrolytes, the Li battery community underwent a half century-long effort, still in progress, to illuminate fundamental properties of the Li SEI—including chemistry, morphology, transport, and sources of Li loss upon cycling—from which guiding principles have emerged to drive improvement in electrolyte and interface design. The Li metal SEI with solid electrolytes presents both similarities and differences to that in liquid electrolytes, with differences defining unique research needs. Here, we examine current understanding of the Li-SE interface as well as learnings from the liquid electrolyte community that we propose might be adopted to help rationalize and improve SE integration with Li anodes. Through this lens, we inspect current state-of-understanding of Li SEI composition, structure, and properties, along with Coulombic efficiency values reported so far for Li cycling with SE. We also highlight potential Li modification strategies for SSB, which are informed by and exploit understanding of the ionic SEI phases; in some instances, engineering strategies utilize a liquid electrolyte SEI directly, making liquid-derived SEI knowledge of immediate relevance.
科研通智能强力驱动
Strongly Powered by AbleSci AI