Artificial intelligence for the evaluation of peripheral artery disease using arterial Doppler waveforms to predict abnormal ankle-brachial index

医学 脚踝 接收机工作特性 动脉疾病 外围设备 内科学 心脏病学 曲线下面积 试验预测值 外科 血管疾病
作者
Robert D. McBane,Dennis H. Murphree,David Liedl,Francisco López-Jimenez,Zachi I. Attia,Adelaide M. Arruda‐Olson,Christopher G. Scott,Naresh Prodduturi,Steve E. Nowakowski,Thom W. Rooke,Ana I. Casanegra,Waldemar E. Wysokiński,Keith Swanson,Damon E. Houghton,Haraldur Bjarnason,Paul W. Wennberg
出处
期刊:Vascular Medicine [SAGE Publishing]
卷期号:27 (4): 333-342 被引量:13
标识
DOI:10.1177/1358863x221094082
摘要

Background: Patients with peripheral artery disease (PAD) are at increased risk for major adverse limb and cardiac events including mortality. Developing screening tools capable of accurate PAD identification is a necessary first step for strategies of adverse outcome prevention. This study aimed to determine whether machine analysis of a resting Doppler waveform using deep neural networks can accurately identify patients with PAD. Methods: Consecutive patients (4/8/2015 – 12/31/2020) undergoing rest and postexercise ankle–brachial index (ABI) testing were included. Patients were randomly allocated to training, validation, and testing subsets (70%/15%/15%). Deep neural networks were trained on resting posterior tibial arterial Doppler waveforms to predict normal (> 0.9) or PAD (⩽ 0.9) using rest and postexercise ABI. A separate dataset of 151 patients who underwent testing during a period after the model had been created and validated (1/1/2021 – 3/31/2021) was used for secondary validation. Area under the receiver operating characteristic curves (AUC) were constructed to evaluate test performance. Results: Among 11,748 total patients, 3432 patients met study criteria: 1941 with PAD (mean age 69 ± 12 years) and 1491 without PAD (64 ± 14 years). The predictive model with highest performance identified PAD with an AUC 0.94 (CI = 0.92–0.96), sensitivity 0.83, specificity 0.88, accuracy 0.85, and positive predictive value (PPV) 0.90. Results were similar for the validation dataset: AUC 0.94 (CI = 0.91–0.98), sensitivity 0.91, specificity 0.85, accuracy 0.89, and PPV 0.89 (postexercise ABI comparison). Conclusion: An artificial intelligence-enabled analysis of a resting Doppler arterial waveform permits identification of PAD at a clinically relevant performance level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
药研农夫发布了新的文献求助10
2秒前
陈全刚完成签到,获得积分10
2秒前
科研通AI6应助tyk采纳,获得30
2秒前
mark发布了新的文献求助10
3秒前
庾傀斗发布了新的文献求助10
4秒前
嘻嘻嘻嗨学习完成签到,获得积分10
5秒前
淡然如松发布了新的文献求助20
10秒前
一梦三四年完成签到 ,获得积分10
11秒前
baifeicao发布了新的文献求助10
11秒前
11秒前
Orange应助可耐的摩托采纳,获得10
13秒前
17秒前
嗨Honey完成签到 ,获得积分10
19秒前
凄凉山谷的风完成签到,获得积分10
20秒前
21秒前
wayt完成签到 ,获得积分10
21秒前
斯文败类应助集典采纳,获得10
22秒前
华仔应助xuqiansd采纳,获得10
24秒前
谨慎哈密瓜完成签到,获得积分10
27秒前
零零完成签到,获得积分10
28秒前
28秒前
单纯念寒完成签到,获得积分10
30秒前
123456完成签到,获得积分10
30秒前
31秒前
高大沧海完成签到,获得积分10
33秒前
景稷远发布了新的文献求助10
34秒前
wayt发布了新的文献求助10
34秒前
赵安安完成签到,获得积分10
35秒前
36秒前
年轻的钥匙完成签到 ,获得积分10
36秒前
Orange应助无敌小宽哥采纳,获得10
37秒前
淡淡十三发布了新的文献求助10
38秒前
38秒前
今后应助qianqina采纳,获得10
38秒前
Meyako应助景稷远采纳,获得10
40秒前
超超发布了新的文献求助10
41秒前
mikey完成签到,获得积分10
42秒前
Lucas应助wayt采纳,获得10
43秒前
木子发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4340586
求助须知:如何正确求助?哪些是违规求助? 3848981
关于积分的说明 12019346
捐赠科研通 3490237
什么是DOI,文献DOI怎么找? 1915484
邀请新用户注册赠送积分活动 958474
科研通“疑难数据库(出版商)”最低求助积分说明 858593