化学
效力
变构调节
整合酶抑制剂
咪唑吡啶
药代动力学
结构-活动关系
立体化学
进入抑制剂
取代基
药理学
整合酶
铅化合物
组合化学
人类免疫缺陷病毒(HIV)
酶
体外
病毒
病毒进入
生物化学
病毒复制
病毒学
病毒载量
基因
生物
医学
抗逆转录病毒疗法
作者
Kyle Parcella,Manoj K. Patel,Yong Kwang Tu,Kyle J. Eastman,Kevin M. Peese,Eric P. Gillis,Makonen Belema,Ira B. Dicker,Brian McAuliffe,Bo Ding,Paul Falk,Jean Simmermacher,Dawn C. Parker,Prasanna Sivaprakasam,Javed Khan,Kevin Kish,Hal A. Lewis,Umesh Hanumegowda,Susan Jenkins,John F. Kadow,Mark Krystal,Nicholas A. Meanwell,B. Narasimhulu Naidu
标识
DOI:10.1016/j.bmc.2022.116833
摘要
Allosteric integrase inhibitors (ALLINIs) of HIV-1 may hold promise as a novel mechanism for HIV therapeutics and cure. Scaffold modifications to the 4-(4,4-dimethylpiperidinyl) 2,6-dimethylpyridinyl class of ALLINIs provided a series of potent compounds with differentiated 5/6 fused ring systems. Notably, inhibitors containing the 1,2,4-triazolopyridine and imidazopyridine core exhibited single digit nM antiviral potency and low to moderate clearance after intravenous (IV) dosing in rat pharmacokinetic (PK) studies. The 1,2,4-triazolopyridines showed a higher oral exposure when compared to the imidazopyridines. Further modifications to the C5 substituent of the 1,2,4-triazolopyridines resulted in a new lead compound, which had improved rat IV/PO PK compared to the former lead compound GSK3739936, while maintaining antiviral potency. Structure-activity relationships (SAR) and rat pharmacokinetic profiles of this series are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI