Automated Assessment of Reinforced Concrete Elements using Ground Penetrating Radar

探地雷达 钢筋 计算机科学 卷积神经网络 无损检测 图像处理 自动化 人工智能 信号处理 雷达 人工神经网络
作者
Sai Teja Kuchipudi,Debdutta Ghosh,Hina Gupta
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:140: 104378-104378
标识
DOI:10.1016/j.autcon.2022.104378
摘要

Ground Penetrating Radar (GPR) has been evolving as a reliable Nondestructive tool for structural concrete inspections. Leveraging Electromagnetic waves enables the technique to be swift and advantageous for internal imaging of anomalies. With rebar and defect detections being the primary objective, post-processing the image/signal data for decluttered output is one of the major concerns. Availability of multiple GPR processing techniques on diverse applications make the appropriate technique selection a tough task. Traditionally structures were inspected for underlying defects and manually judged based on the semantic interpretation of radar signatures. However, cognitive decision making after processing enormous datasets can be time consuming and error prone. With advances in Computer Vision, there has been a surge in the number of neural architectures applied for automated object detection. This paper attempts to address the gray areas in technique optimization and automation by reviewing various GPR based manual detection models and their transition towards automated detection. Evolution of signal/image processing algorithms from manual migration-based imaging to automated object detection deploying Convolutional Neural Networks (CNNs) has been presented. This study also outlines various insights, challenges, and avenues for future research in the domain of non-invasive structural diagnostics using the GPR. • Comparison of multiple GPR processing techniques for detection of prevailing defects in concrete. • Reviewed various neural architectures for automatic detection of rebars and internal flaws in concrete. • Performance comparison of deep networks for rebars and defects detection in reinforced concrete. • Highlighted works on fusion of various NDE techniques with GPR. • Discussion on various factors affecting detectability of targets under the radar.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CQS发布了新的文献求助10
1秒前
1111完成签到 ,获得积分10
2秒前
脑洞疼应助漫漫采纳,获得10
2秒前
Owen应助Ninico采纳,获得10
3秒前
文G完成签到,获得积分10
4秒前
sutharsons应助张演基采纳,获得200
5秒前
6秒前
小绵羊发布了新的文献求助10
7秒前
SYLH应助默默的巧荷采纳,获得10
10秒前
10秒前
WY发布了新的文献求助20
12秒前
琮博完成签到,获得积分10
13秒前
13秒前
VicTarZ完成签到,获得积分10
13秒前
冰魂应助悦耳的怀绿采纳,获得10
14秒前
15秒前
15秒前
16秒前
科研通AI5应助没有昵称采纳,获得150
16秒前
九章发布了新的文献求助10
16秒前
momo完成签到,获得积分10
17秒前
18秒前
19秒前
白石杏完成签到,获得积分10
19秒前
果子发布了新的文献求助10
20秒前
HHHH完成签到,获得积分10
20秒前
mutsu发布了新的文献求助10
20秒前
CU2DOGB发布了新的文献求助30
22秒前
稳重乌冬面完成签到 ,获得积分10
22秒前
13656479046发布了新的文献求助10
23秒前
gemini0615发布了新的文献求助20
24秒前
24秒前
pluto应助科研通管家采纳,获得10
25秒前
李健应助科研通管家采纳,获得10
25秒前
25秒前
隐形曼青应助科研通管家采纳,获得10
26秒前
26秒前
大雄的梦想是什么完成签到 ,获得积分10
26秒前
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784087
求助须知:如何正确求助?哪些是违规求助? 3329170
关于积分的说明 10240662
捐赠科研通 3044703
什么是DOI,文献DOI怎么找? 1671236
邀请新用户注册赠送积分活动 800191
科研通“疑难数据库(出版商)”最低求助积分说明 759222