益生元
化学
酶
生物化学
背景(考古学)
生物有机化学
比活度
细胞凋亡
色谱法
生物
古生物学
作者
Ritumbhara Choukade,Naveen Kango
标识
DOI:10.1111/1750-3841.16173
摘要
In the present study, generation of prebiotic fructooligosaccharides (FOS) using Aspergillus tamarii FTase was optimized by applying response surface methodology. Optimal FOS (251 g L-1 ) was generated at 28.4°C, pH 7.0 and 50% (w/v) sucrose leading to 1.97-fold yield enhancement. The m-FTase was purified using ultrafiltration followed by HiTrap Q HP anion exchange chromatography resulting in 2.15-fold purified FTase with 12.76 U mg-1 specific activity. Purified FTase (75 kDa) had Km and Vmax values of 1049.717 mM and 2.094 µmol min-1 mg-1 , respectively. FOS incorporation led to upregulation of caspase 3, caspase 9, and Bax genes suggesting mitochondrial apoptosis activation in cancer cells. The study describes characteristics of purified FTase from A. tamarii, production optimization of FOS and unravels the role of FOS in anticancer activity against HT-29 cells. PRACTICAL APPLICATION: This study provides detailed insights of kinetic and thermodynamic characteristics of purified FTase, a prebiotic FOS-generating enzyme. Moreover, the role of the apoptotic genes involved in anticancer activity, and the prebiotic potential of FOS is also investigated. These findings are important in the context of FOS applications, and the optimized production strategies make it useful for industrial application.
科研通智能强力驱动
Strongly Powered by AbleSci AI