Time-Varying-Aware Network Traffic Prediction Via Deep Learning in IIoT

计算机科学 可解释性 交通分类 交通生成模型 网络拓扑 任务(项目管理) 数据挖掘 计算机网络 分布式计算 人工智能 服务质量 工程类 系统工程
作者
Ranran Wang,Yin Zhang⋆,Limei Peng,Giancarlo Fortino,Pin‐Han Ho
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (11): 8129-8137 被引量:12
标识
DOI:10.1109/tii.2022.3163558
摘要

With the rise of the Industrial Internet of Things (IIoT), more and more industrial devices can be connected via the network. Data collection, processing, analysis, task execution, and other devices that can product network traffic volume are gradually being deployed to IIoT. However, under the limited spectrum resources and low-cost and low-energy production requirements of enterprises, how to ensure the interconnection and intercommunication of industrial networks while realizing the effective use of network communication resources is currently a hot topic. Among them, network traffic prediction is considered to be a very important task. The time variability and interpretability, especially the time-varying features of traffic sequences, greatly challenge this task. To address those, this article proposes a method called Flow2graph to predict network traffic in IIoT. Specifically, some key segments, i.e., shapelets are extracted from the network traffic sequence according to time-varying traffic; then uses the relationship between the traffic sequence and shapelets to convert the flow into a shapelets conversion graph; Subsequently, the graph isomorphism network are used to learn the specificity of the flow sequence from different devices, thereby to predict its traffic value for a period of time in the future; finally, we conduct extensive experiments on real data to verify the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
啦啦啦啦完成签到,获得积分20
2秒前
XYY发布了新的文献求助10
2秒前
斯文的斩完成签到,获得积分10
3秒前
3秒前
核桃发布了新的文献求助10
4秒前
QQ完成签到 ,获得积分10
4秒前
cc发布了新的文献求助10
5秒前
SYLH应助啦啦啦啦采纳,获得10
7秒前
7秒前
8秒前
油炸麻辣豆包完成签到,获得积分10
8秒前
8秒前
8秒前
yihoxu发布了新的文献求助10
8秒前
寒冷的土豆完成签到,获得积分10
9秒前
9秒前
9秒前
Jasper应助学术渣渣采纳,获得10
9秒前
10秒前
微笑笑南完成签到,获得积分10
11秒前
小二郎应助cc采纳,获得10
12秒前
12秒前
12秒前
13秒前
核桃发布了新的文献求助10
13秒前
领导范儿应助XYY采纳,获得10
13秒前
13秒前
辉子发布了新的文献求助10
13秒前
14秒前
14秒前
WDD完成签到,获得积分10
15秒前
都是发布了新的文献求助30
16秒前
16秒前
16秒前
111完成签到,获得积分20
17秒前
17秒前
WW发布了新的文献求助10
18秒前
18秒前
19秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846453
求助须知:如何正确求助?哪些是违规求助? 3388950
关于积分的说明 10555151
捐赠科研通 3109404
什么是DOI,文献DOI怎么找? 1713694
邀请新用户注册赠送积分活动 824853
科研通“疑难数据库(出版商)”最低求助积分说明 775086