Biases in human mobility data impact epidemic modeling

代表性启发 计算机科学 歪斜 计量经济学 人口 数据科学 TRIPS体系结构 统计 电信 数学 并行计算 社会学 人口学
作者
Frank Schlosser,Vedran Sekara,Dirk Brockmann,Manuel García–Herranz
出处
期刊:Cornell University - arXiv 被引量:11
标识
DOI:10.48550/arxiv.2112.12521
摘要

Large-scale human mobility data is a key resource in data-driven policy making and across many scientific fields. Most recently, mobility data was extensively used during the COVID-19 pandemic to study the effects of governmental policies and to inform epidemic models. Large-scale mobility is often measured using digital tools such as mobile phones. However, it remains an open question how truthfully these digital proxies represent the actual travel behavior of the general population. Here, we examine mobility datasets from multiple countries and identify two fundamentally different types of bias caused by unequal access to, and unequal usage of mobile phones. We introduce the concept of data generation bias, a previously overlooked type of bias, which is present when the amount of data that an individual produces influences their representation in the dataset. We find evidence for data generation bias in all examined datasets in that high-wealth individuals are overrepresented, with the richest 20% contributing over 50% of all recorded trips, substantially skewing the datasets. This inequality is consequential, as we find mobility patterns of different wealth groups to be structurally different, where the mobility networks of high-wealth users are denser and contain more long-range connections. To mitigate the skew, we present a framework to debias data and show how simple techniques can be used to increase representativeness. Using our approach we show how biases can severely impact outcomes of dynamic processes such as epidemic simulations, where biased data incorrectly estimates the severity and speed of disease transmission. Overall, we show that a failure to account for biases can have detrimental effects on the results of studies and urge researchers and practitioners to account for data-fairness in all future studies of human mobility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿景发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
chi完成签到,获得积分10
刚刚
韩_完成签到,获得积分10
1秒前
1秒前
坚定不一完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
葫芦娃发布了新的文献求助10
2秒前
3秒前
天天快乐应助超级丝采纳,获得10
3秒前
3秒前
无极微光应助轻云触月采纳,获得20
4秒前
李伟发布了新的文献求助10
4秒前
kevin发布了新的文献求助10
4秒前
xiaobin发布了新的文献求助10
5秒前
共享精神应助126采纳,获得10
5秒前
ohh发布了新的文献求助10
5秒前
5秒前
香蕉觅云应助Runostp采纳,获得10
5秒前
努力的学发布了新的文献求助10
5秒前
香蕉诗蕊给叶寻的求助进行了留言
5秒前
在水一方应助dawn采纳,获得10
6秒前
丘比特应助Eason215xB采纳,获得10
6秒前
jfaioe发布了新的文献求助20
6秒前
6秒前
zjkzh发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
ephemeral发布了新的文献求助10
7秒前
chy发布了新的文献求助10
7秒前
绾宸发布了新的文献求助20
8秒前
彪壮的拓芙完成签到,获得积分10
8秒前
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620086
求助须知:如何正确求助?哪些是违规求助? 4704553
关于积分的说明 14928430
捐赠科研通 4760801
什么是DOI,文献DOI怎么找? 2550747
邀请新用户注册赠送积分活动 1513486
关于科研通互助平台的介绍 1474498