Toward Physics-Based Generalizable Convolutional Neural Network Models for Indoor Propagation

卷积神经网络 计算机科学 人工神经网络 无线电传播 物理 人工智能 电信
作者
Aristeidis Seretis,Costas D. Sarris
出处
期刊:IEEE Transactions on Antennas and Propagation [IEEE Antennas & Propagation Society]
卷期号:70 (6): 4112-4126 被引量:26
标识
DOI:10.1109/tap.2021.3138535
摘要

A fundamental challenge for machine learning (ML) models for electromagnetics is their ability to predict output quantities of interest (such as fields and scattering parameters) in geometries that the model has not been trained for. Addressing this challenge is a key to fulfilling one of the most appealing promises of ML for computational electromagnetics: the rapid solution of problems of interest just by processing the geometry and the sources involved. The impact of such models that can "generalize" to new geometries is more profound for large-scale computations, such as those encountered in wireless propagation scenarios. We present generalizable models for indoor propagation that can predict received signal strengths within new geometries, beyond those of the training set of the model, for transmitters and receivers of multiple positions, and for new frequencies. We show that a convolutional neural network can "learn" the physics of indoor radiowave propagation from ray-tracing solutions of a small set of training geometries so that it can eventually deal with substantially different geometries. We emphasize the role of exploiting physical insights in the training of the network, by defining input parameters and cost functions that assist the network to efficiently learn basic and complex propagation mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lzs完成签到,获得积分10
1秒前
ywhys完成签到,获得积分20
1秒前
LU41完成签到,获得积分10
1秒前
田清源完成签到,获得积分10
2秒前
一个完成签到 ,获得积分10
2秒前
Qiuyajing完成签到,获得积分10
4秒前
XRWei完成签到 ,获得积分10
4秒前
丘比特应助神勇的寄风采纳,获得80
5秒前
7秒前
8秒前
顾矜应助张远幸采纳,获得10
8秒前
哎嘤斯坦完成签到,获得积分10
10秒前
gao完成签到,获得积分10
11秒前
舒适小馒头完成签到,获得积分10
11秒前
霸气梦菲发布了新的文献求助10
12秒前
积极的康乃馨完成签到 ,获得积分10
15秒前
桐桐应助研友_nPbeR8采纳,获得10
17秒前
香蕉觅云应助peipei采纳,获得10
18秒前
xxs完成签到,获得积分10
19秒前
shuke完成签到,获得积分10
19秒前
Ying完成签到,获得积分10
20秒前
21秒前
彩色的恋风完成签到,获得积分10
22秒前
24秒前
陈醋塔塔完成签到,获得积分10
25秒前
高挑的梦芝完成签到,获得积分10
26秒前
学不完了发布了新的文献求助10
26秒前
迅速的萧完成签到 ,获得积分10
27秒前
27秒前
JamesPei应助俭朴的期待采纳,获得10
28秒前
Dawn完成签到,获得积分10
29秒前
29秒前
SSYZ发布了新的文献求助10
33秒前
赘婿应助科演小能手采纳,获得10
33秒前
35秒前
哈哈完成签到,获得积分20
37秒前
guoduan发布了新的文献求助10
38秒前
烂漫夜梦完成签到,获得积分10
38秒前
小垃圾完成签到,获得积分10
38秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321756
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680172
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445