Metabolomic investigation of urinary extracellular vesicles for early detection and screening of lung cancer

代谢组学 肺癌 代谢组 癌症 癌症生物标志物 医学 诊断生物标志物 癌变 生物标志物 泌尿系统 肿瘤科 内科学 生物信息学 生物 生物化学
作者
Qinsi Yang,Jiaxin Luo,Hao Xu,Liu Huang,Xinxi Zhu,Hengrui Li,Rui Yang,Bo Peng,Da Sun,Qingfu Zhu,Fei Liu
出处
期刊:Journal of Nanobiotechnology [Springer Nature]
卷期号:21 (1): 153-153 被引量:35
标识
DOI:10.1186/s12951-023-01908-0
摘要

Abstract Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a poor prognosis due to the lack of effective diagnostic techniques and molecular biomarkers. However, emerging evidence suggests that extracellular vesicles (EVs) may promote lung cancer cell proliferation and metastasis, and modulate the anti-tumor immune response in lung cancer carcinogenesis, making them potential biomarkers for early cancer detection. To investigate the potential of urinary EVs for non-invasive detection and screening of patients at early stages, we studied metabolomic signatures of lung cancer. Specifically, we conducted metabolomic analysis of 102 EV samples and identified metabolome profiles of urinary EVs, including organic acids and derivatives, lipids and lipid-like molecules, organheterocyclic compounds, and benzenoids. Using machine learning with a random forest model, we screened for potential markers of lung cancer and identified a marker panel consisting of Kanzonol Z, Xanthosine, Nervonyl carnitine, and 3,4-Dihydroxybenzaldehyde, which exhibited a diagnostic potency of 96% for the testing cohort (AUC value). Importantly, this marker panel also demonstrated effective prediction for the validation set, with an AUC value of 84%, indicating the reliability of the marker screening process. Our findings suggest that the metabolomic analysis of urinary EVs provides a promising source of non-invasive markers for lung cancer diagnostics. We believe that the EV metabolic signatures could be used to develop clinical applications for the early detection and screening of lung cancer, potentially improving patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恒恒666完成签到,获得积分10
1秒前
桐桐应助缘起缘灭采纳,获得10
1秒前
荷月初六发布了新的文献求助10
1秒前
2秒前
领导范儿应助王阳洋采纳,获得10
2秒前
klpkyx完成签到,获得积分10
2秒前
5tcl发布了新的文献求助30
2秒前
Orange应助Draeck采纳,获得10
4秒前
852应助luckly采纳,获得10
8秒前
摸鱼王完成签到,获得积分10
9秒前
hhhh完成签到,获得积分10
10秒前
diu发布了新的文献求助600
10秒前
5tcl完成签到,获得积分10
10秒前
10秒前
喵老希完成签到 ,获得积分10
12秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
Jasper应助tough_cookie采纳,获得10
16秒前
Joyce完成签到 ,获得积分10
18秒前
泽锦臻发布了新的文献求助10
19秒前
19秒前
天天快乐应助小李采纳,获得10
19秒前
大渣饼完成签到 ,获得积分10
19秒前
20秒前
fate完成签到,获得积分10
20秒前
21秒前
luckly发布了新的文献求助10
22秒前
852应助科研通管家采纳,获得10
22秒前
23秒前
Akim应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
mwx应助科研通管家采纳,获得10
23秒前
mwx应助科研通管家采纳,获得10
23秒前
我是老大应助科研通管家采纳,获得10
23秒前
852应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
mwx应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532650
求助须知:如何正确求助?哪些是违规求助? 4621382
关于积分的说明 14577620
捐赠科研通 4561234
什么是DOI,文献DOI怎么找? 2499258
邀请新用户注册赠送积分活动 1479203
关于科研通互助平台的介绍 1450406