Machine Learning Prediction of the Yield and BET Area of Activated Carbon Quantitatively Relating to Biomass Compositions and Operating Conditions

碳化 活性炭 打赌理论 产量(工程) 生物量(生态学) 碳纤维 多孔性 比表面积 化学 化学工程 材料科学 有机化学 催化作用 复合材料 吸附 农学 复合数 生物 工程类
作者
Cong Wang,Wenbo Jiang,Guancong Jiang,Tonghuan Zhang,Kui He,Liwen Mu,Jiahua Zhu,Dechun Huang,Hongliang Qian,Xiaohua Lü
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:62 (28): 11016-11031 被引量:11
标识
DOI:10.1021/acs.iecr.3c00640
摘要

Although activated carbon's yield (quantity index) and BET area (quality index) are crucial to its application, the two indexes must be accurately predicted. Herein, biomass compositions (ultimate analysis, proximate analysis, and chemical analysis), operating conditions (mass ratio, carbonization time, carbonization temperature, activation time, and activation temperature) under physical activation (CO2 and steam), and chemical activation (H3PO4, KOH, and ZnCl2) conditions as input parameters were used to predict the two indexes of activated carbon simultaneously through the random forest (RF) method for the first time. In total, the samples (>1500 data) identified from experiments in the literature were used to train, validate, and test the RF models. The results show that the model built on ultimate analysis is more suitable for predicting the BET area and yield of activated carbon prepared by both physical and chemical activation. Therein, the R2 values of activated carbon's yield and BET area under the H3PO4 activation condition were the highest, which were 0.98 and 0.97, respectively. In addition, the influence of various factors and interactions on the target variables was analyzed. The results show that the hydrogen content has a large impact on the yield under physical activation conditions, and the mass ratio has the most contribution to the BET area under chemical activation conditions. This study affords achievable hints to the quantitative prediction of porous materials affected by multiple compositions of raw materials and different operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Duduk完成签到,获得积分10
刚刚
miketyson完成签到,获得积分10
刚刚
黑豆也完成签到,获得积分10
1秒前
Ava应助天海采纳,获得30
1秒前
wenleizang完成签到,获得积分10
1秒前
2秒前
4秒前
Jun发布了新的文献求助10
4秒前
大树完成签到 ,获得积分10
6秒前
FashionBoy应助zzzzzzy采纳,获得10
6秒前
guo完成签到,获得积分10
7秒前
热心市民小红花应助milly采纳,获得10
7秒前
10秒前
10秒前
QiaoHL完成签到 ,获得积分10
11秒前
11秒前
13秒前
bkagyin应助小张要加葱姜蒜采纳,获得10
14秒前
15秒前
zzzzzzy发布了新的文献求助10
18秒前
科研通AI2S应助小米采纳,获得10
20秒前
大个应助Yuanyuan采纳,获得10
20秒前
今天不学习明天变垃圾完成签到,获得积分10
20秒前
wenleizang关注了科研通微信公众号
22秒前
完美世界应助顺心的芝麻采纳,获得10
22秒前
wlj完成签到 ,获得积分10
22秒前
milly完成签到,获得积分20
24秒前
25秒前
斯文败类应助昏睡的蟠桃采纳,获得10
25秒前
万灵竹发布了新的文献求助20
29秒前
zhang完成签到,获得积分10
29秒前
mm发布了新的文献求助10
30秒前
Jun完成签到,获得积分10
35秒前
39秒前
mm完成签到,获得积分10
40秒前
40秒前
42秒前
顾矜应助小柯采纳,获得10
42秒前
慕容松发布了新的文献求助10
43秒前
43秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4087807
求助须知:如何正确求助?哪些是违规求助? 3626710
关于积分的说明 11499812
捐赠科研通 3339556
什么是DOI,文献DOI怎么找? 1836012
邀请新用户注册赠送积分活动 904171
科研通“疑难数据库(出版商)”最低求助积分说明 822092