变压器
情态动词
认知障碍
计算机科学
神经影像学
认知
人工智能
模式识别(心理学)
工程类
电压
心理学
神经科学
电气工程
材料科学
高分子化学
作者
Linfeng Liu,Junyan Lyu,Siyu Liu,Xiaoying Tang,Shekhar S. Chandra,Fatima A. Nasrallah
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2307.07177
摘要
The prediction of mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD) is important for early treatment to prevent or slow the progression of AD. To accurately predict the MCI conversion to stable MCI or progressive MCI, we propose Triformer, a novel transformer-based framework with three specialized transformers to incorporate multi-model data. Triformer uses I) an image transformer to extract multi-view image features from medical scans, II) a clinical transformer to embed and correlate multi-modal clinical data, and III) a modality fusion transformer that produces an accurate prediction based on fusing the outputs from the image and clinical transformers. Triformer is evaluated on the Alzheimer's Disease Neuroimaging Initiative (ANDI)1 and ADNI2 datasets and outperforms previous state-of-the-art single and multi-modal methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI