结束语(心理学)
启发式
相互依存
流量(计算机网络)
运输工程
计算机科学
控制(管理)
布线(电子设计自动化)
遗传算法
信号定时
流量网络
交通生成模型
接头(建筑物)
交通网络
运筹学
工程类
数学优化
实时计算
计算机网络
土木工程
人工智能
经济
机器学习
法学
市场经济
数学
政治学
作者
Wanda Ma,Peng Li,Jing Zhao
标识
DOI:10.1080/21680566.2023.2231158
摘要
This study introduces an innovative bi-level model to address the challenges of managing traffic flow in construction work zones in urban transportation networks. The model integrates ramp closure, lane reorganization, and signal timing strategies within a network-level framework, thereby capturing the interdependencies between these strategies and enhancing the overall performance of the transportation network. The upper level optimizes the ramp closure locations, traffic control timing at signalized intersections and lane reorganization plans, whereas the lower level determines the optimal routing choice and traffic detour based on a Stochastic User Equilibrium (SUE) model. A Genetic Algorithm (GA)-based heuristic method is proposed to solve the optimization problem, and a case study demonstrates the effectiveness of the proposed approach. This study offers a comprehensive and innovative solution to mitigate the negative impacts of detour traffic on urban transportation networks, assist transportation agencies in effectively managing traffic flow and improve the overall system performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI