Classification of Imbalanced Data Using SMOTE and AutoEncoder Based Deep Convolutional Neural Network

人工智能 计算机科学 自编码 过采样 卷积神经网络 深度学习 模式识别(心理学) 机器学习 预处理器 数据预处理 数据集 分类器(UML) 数据挖掘 带宽(计算) 计算机网络
作者
Suja A. Alex,J. Jesu Vedha Nayahi
出处
期刊:International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems [World Scientific]
卷期号:31 (03): 437-469 被引量:9
标识
DOI:10.1142/s0218488523500228
摘要

The imbalanced data classification is a challenging issue in many domains including medical intelligent diagnosis and fraudulent transaction analysis. The performance of the conventional classifier degrades due to the imbalanced class distribution of the training data set. Recently, machine learning and deep learning techniques are used for imbalanced data classification. Data preprocessing approaches are also suitable for handling class imbalance problem. Data augmentation is one of the preprocessing techniques used to handle skewed class distribution. Synthetic Minority Oversampling Technique (SMOTE) is a promising class balancing approach and it generates noise during the process of creation of synthetic samples. In this paper, AutoEncoder is used as a noise reduction technique and it reduces the noise generated by SMOTE. Further, Deep one-dimensional Convolutional Neural Network is used for classification. The performance of the proposed method is evaluated and compared with existing approaches using different metrics such as Precision, Recall, Accuracy, Area Under the Curve and Geometric Mean. Ten data sets with imbalance ratio ranging from 1.17 to 577.87 and data set size ranging from 303 to 284807 instances are used in the experiments. The different imbalanced data sets used are Heart-Disease, Mammography, Pima Indian diabetes, Adult, Oil-Spill, Phoneme, Creditcard, BankNoteAuthentication, Balance scale weight & distance database and Yeast data sets. The proposed method shows an accuracy of 96.1%, 96.5%, 87.7%, 87.3%, 95%, 92.4%, 98.4%, 86.1%, 94% and 95.9% respectively. The results suggest that this method outperforms other deep learning methods and machine learning methods with respect to G-mean and other performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助cc采纳,获得10
刚刚
淡定尔曼发布了新的文献求助10
刚刚
My完成签到 ,获得积分10
刚刚
1秒前
xiapihpou发布了新的文献求助10
1秒前
zhenzheng完成签到 ,获得积分10
1秒前
方鞅发布了新的文献求助30
1秒前
呆鸥完成签到,获得积分10
2秒前
张张完成签到,获得积分10
2秒前
3秒前
Xu发布了新的文献求助10
3秒前
4秒前
斯文败类应助苹果发夹采纳,获得10
4秒前
4秒前
5秒前
5秒前
6秒前
北冰石完成签到,获得积分10
6秒前
ily.发布了新的文献求助10
6秒前
丘比特应助隐形背包采纳,获得10
7秒前
情怀应助鲨鱼辣椒793采纳,获得10
7秒前
王晓静发布了新的文献求助20
8秒前
香菇煲汤发布了新的文献求助10
8秒前
愉快枫叶发布了新的文献求助20
8秒前
好好学习完成签到,获得积分10
8秒前
帅关发布了新的文献求助10
9秒前
iNk应助壮壮妞采纳,获得20
9秒前
9秒前
尊敬的小土豆完成签到,获得积分10
10秒前
星际完成签到,获得积分10
10秒前
赘婿应助LIN采纳,获得10
11秒前
11秒前
缓慢含烟发布了新的文献求助10
12秒前
英俊的铭应助family365采纳,获得10
12秒前
秀丽高跟鞋完成签到,获得积分10
12秒前
正直凌文发布了新的文献求助10
12秒前
flowerliu发布了新的文献求助10
13秒前
13秒前
13秒前
希望天下0贩的0应助EVE采纳,获得10
14秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1155
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4108343
求助须知:如何正确求助?哪些是违规求助? 3646445
关于积分的说明 11550471
捐赠科研通 3352436
什么是DOI,文献DOI怎么找? 1842066
邀请新用户注册赠送积分活动 908390
科研通“疑难数据库(出版商)”最低求助积分说明 825491