人工智能
计算机科学
自编码
过采样
卷积神经网络
深度学习
模式识别(心理学)
机器学习
预处理器
数据预处理
数据集
分类器(UML)
数据挖掘
带宽(计算)
计算机网络
作者
Suja A. Alex,J. Jesu Vedha Nayahi
标识
DOI:10.1142/s0218488523500228
摘要
The imbalanced data classification is a challenging issue in many domains including medical intelligent diagnosis and fraudulent transaction analysis. The performance of the conventional classifier degrades due to the imbalanced class distribution of the training data set. Recently, machine learning and deep learning techniques are used for imbalanced data classification. Data preprocessing approaches are also suitable for handling class imbalance problem. Data augmentation is one of the preprocessing techniques used to handle skewed class distribution. Synthetic Minority Oversampling Technique (SMOTE) is a promising class balancing approach and it generates noise during the process of creation of synthetic samples. In this paper, AutoEncoder is used as a noise reduction technique and it reduces the noise generated by SMOTE. Further, Deep one-dimensional Convolutional Neural Network is used for classification. The performance of the proposed method is evaluated and compared with existing approaches using different metrics such as Precision, Recall, Accuracy, Area Under the Curve and Geometric Mean. Ten data sets with imbalance ratio ranging from 1.17 to 577.87 and data set size ranging from 303 to 284807 instances are used in the experiments. The different imbalanced data sets used are Heart-Disease, Mammography, Pima Indian diabetes, Adult, Oil-Spill, Phoneme, Creditcard, BankNoteAuthentication, Balance scale weight & distance database and Yeast data sets. The proposed method shows an accuracy of 96.1%, 96.5%, 87.7%, 87.3%, 95%, 92.4%, 98.4%, 86.1%, 94% and 95.9% respectively. The results suggest that this method outperforms other deep learning methods and machine learning methods with respect to G-mean and other performance metrics.
科研通智能强力驱动
Strongly Powered by AbleSci AI