亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Building Multimodal Knowledge Bases With Multimodal Computational Sequences and Generative Adversarial Networks

计算机科学 对抗制 生成语法 人工智能 理论计算机科学 人机交互 机器学习
作者
Donghua Chen,Runtong Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 2027-2040 被引量:10
标识
DOI:10.1109/tmm.2023.3291503
摘要

Conventional knowledge graphs (KGs) are composed solely of entities, attributes, and relationships, which poses challenges for enhancing multimodal knowledge representation and reasoning. To address the issue, this article proposes a multimodal deep learning-based approach to build a multimodal knowledge base (MMKB) for better multimodal feature (MMF) utilization. First, we construct a multimodal computation sequence (MCS) model for structured multimodal data storage. Then, we propose multimodal node, relationship, and dictionary models to enhance multimodal knowledge representation. Various feature extractors are used to extract MMFs from text, audio, image, and video data. Finally, we leverage generative adversarial networks (GANs) to facilitate MMF representation and update the MMKB dynamically. We examine the performance of the proposed method by using three multimodal datasets. BOW-, LBP-, Volume-, and VGGish-based feature extractors outperform the other methods by reducing at least 1.13%, 22.14%, 39.87, and 5.65% of the time cost, respectively. The average time costs of creating multimodal indexes improve by approximately 55.07% and 68.60% exact matching rates compared with the baseline method, respectively. The deep learning-based autoencoder method reduces the search time cost by 98.90% after using the trained model, outperforming the state-of-the-art methods. In terms of multimodal data representation, the GAN-CNN models achieve an average correct rate of 82.70%. Our open-source work highlights the importance of flexible MMF utilization in multimodal KGs, leading to more powerful and diverse applications that can leverage different types of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lignin应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得30
3秒前
Lignin应助科研通管家采纳,获得20
3秒前
17秒前
25秒前
大模型应助3号球衣采纳,获得10
26秒前
43秒前
3号球衣发布了新的文献求助10
46秒前
笑点低涟妖完成签到 ,获得积分10
55秒前
shenghaowen完成签到,获得积分10
56秒前
1分钟前
速溶baka完成签到,获得积分10
1分钟前
2分钟前
2分钟前
李健的粉丝团团长应助nhh采纳,获得10
2分钟前
特牛啊啊发布了新的文献求助10
2分钟前
2分钟前
2分钟前
hzh0525应助Marciu33采纳,获得10
2分钟前
2分钟前
nhh发布了新的文献求助10
2分钟前
wizardz发布了新的文献求助10
2分钟前
2分钟前
xbb0905发布了新的文献求助10
2分钟前
领导范儿应助特牛啊啊采纳,获得10
2分钟前
iwww完成签到 ,获得积分10
3分钟前
Augustines完成签到,获得积分10
3分钟前
xbb0905完成签到,获得积分10
3分钟前
4分钟前
JamesPei应助科研通管家采纳,获得10
4分钟前
123发布了新的文献求助10
4分钟前
4分钟前
123完成签到,获得积分10
4分钟前
crown完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3931090
求助须知:如何正确求助?哪些是违规求助? 3475973
关于积分的说明 10988943
捐赠科研通 3206280
什么是DOI,文献DOI怎么找? 1771847
邀请新用户注册赠送积分活动 859253
科研通“疑难数据库(出版商)”最低求助积分说明 797053