Predicting the Efficacy of Neoadjuvant Chemotherapy for Pancreatic Cancer Using Deep Learning of Contrast-Enhanced Ultrasound Videos

超声造影 卷积神经网络 深度学习 化疗 人工智能 医学 放射科 二元分类 计算机科学 超声波 内科学 支持向量机
作者
Yuming Shao,Yingnan Dang,Yuejuan Cheng,Yang Gui,Xueqi Chen,Tianjiao Chen,Yan Zeng,Li Tan,Jing Zhang,Mengsu Xiao,Xiaoyi Yan,Ke Lv,Zhuhuang Zhou
出处
期刊:Diagnostics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (13): 2183-2183 被引量:10
标识
DOI:10.3390/diagnostics13132183
摘要

Contrast-enhanced ultrasound (CEUS) is a promising imaging modality in predicting the efficacy of neoadjuvant chemotherapy for pancreatic cancer, a tumor with high mortality. In this study, we proposed a deep-learning-based strategy for analyzing CEUS videos to predict the prognosis of pancreatic cancer neoadjuvant chemotherapy. Pre-trained convolutional neural network (CNN) models were used for binary classification of the chemotherapy as effective or ineffective, with CEUS videos collected before chemotherapy as the model input, and with the efficacy after chemotherapy as the reference standard. We proposed two deep learning models. The first CNN model used videos of ultrasound (US) and CEUS (US+CEUS), while the second CNN model only used videos of selected regions of interest (ROIs) within CEUS (CEUS-ROI). A total of 38 patients with strict restriction of clinical factors were enrolled, with 76 original CEUS videos collected. After data augmentation, 760 and 720 videos were included for the two CNN models, respectively. Seventy-six-fold and 72-fold cross-validations were performed to validate the classification performance of the two CNN models. The areas under the curve were 0.892 and 0.908 for the two models. The accuracy, recall, precision and F1 score were 0.829, 0.759, 0.786, and 0.772 for the first model. Those were 0.864, 0.930, 0.866, and 0.897 for the second model. A total of 38.2% and 40.3% of the original videos could be clearly distinguished by the deep learning models when the naked eye made an inaccurate classification. This study is the first to demonstrate the feasibility and potential of deep learning models based on pre-chemotherapy CEUS videos in predicting the efficacy of neoadjuvant chemotherapy for pancreas cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凌晨两点半完成签到,获得积分10
2秒前
采桑子发布了新的文献求助10
2秒前
caibuyaobing应助yyyyyy采纳,获得100
2秒前
3秒前
3秒前
烟花应助秦子越采纳,获得10
3秒前
qq发布了新的文献求助10
3秒前
4秒前
钮若翠发布了新的文献求助10
5秒前
Kahanto发布了新的文献求助10
5秒前
科研通AI2S应助好运来采纳,获得10
6秒前
FashionBoy应助shaung yang采纳,获得10
6秒前
YE发布了新的文献求助10
7秒前
7秒前
7秒前
学术段发布了新的文献求助10
8秒前
8秒前
9秒前
yuguofang完成签到,获得积分10
10秒前
10秒前
XRWei完成签到 ,获得积分10
10秒前
脑洞疼应助哈哈采纳,获得10
12秒前
采桑子完成签到,获得积分10
12秒前
12秒前
13秒前
Distance发布了新的文献求助10
13秒前
赫连涵柏完成签到,获得积分10
14秒前
14秒前
yuguofang发布了新的文献求助10
14秒前
15秒前
老马哥完成签到 ,获得积分0
16秒前
秦子越发布了新的文献求助10
16秒前
小医学生完成签到,获得积分20
16秒前
学术段完成签到,获得积分10
16秒前
科目三应助冯兴龙采纳,获得10
17秒前
17秒前
Yuria发布了新的文献求助10
18秒前
Kahanto完成签到,获得积分10
19秒前
小医学生发布了新的文献求助10
20秒前
科研人完成签到,获得积分10
20秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840171
求助须知:如何正确求助?哪些是违规求助? 3382372
关于积分的说明 10522936
捐赠科研通 3101820
什么是DOI,文献DOI怎么找? 1708417
邀请新用户注册赠送积分活动 822434
科研通“疑难数据库(出版商)”最低求助积分说明 773317