Predicting the Efficacy of Neoadjuvant Chemotherapy for Pancreatic Cancer Using Deep Learning of Contrast-Enhanced Ultrasound Videos

超声造影 卷积神经网络 深度学习 化疗 人工智能 医学 放射科 二元分类 计算机科学 超声波 内科学 支持向量机
作者
Yuming Shao,Yingnan Dang,Yuejuan Cheng,Yang Gui,Xueqi Chen,Tianjiao Chen,Yan Zeng,Li Tan,Jing Zhang,Mengsu Xiao,Xiaoyi Yan,Ke Lv,Zhuhuang Zhou
出处
期刊:Diagnostics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (13): 2183-2183 被引量:10
标识
DOI:10.3390/diagnostics13132183
摘要

Contrast-enhanced ultrasound (CEUS) is a promising imaging modality in predicting the efficacy of neoadjuvant chemotherapy for pancreatic cancer, a tumor with high mortality. In this study, we proposed a deep-learning-based strategy for analyzing CEUS videos to predict the prognosis of pancreatic cancer neoadjuvant chemotherapy. Pre-trained convolutional neural network (CNN) models were used for binary classification of the chemotherapy as effective or ineffective, with CEUS videos collected before chemotherapy as the model input, and with the efficacy after chemotherapy as the reference standard. We proposed two deep learning models. The first CNN model used videos of ultrasound (US) and CEUS (US+CEUS), while the second CNN model only used videos of selected regions of interest (ROIs) within CEUS (CEUS-ROI). A total of 38 patients with strict restriction of clinical factors were enrolled, with 76 original CEUS videos collected. After data augmentation, 760 and 720 videos were included for the two CNN models, respectively. Seventy-six-fold and 72-fold cross-validations were performed to validate the classification performance of the two CNN models. The areas under the curve were 0.892 and 0.908 for the two models. The accuracy, recall, precision and F1 score were 0.829, 0.759, 0.786, and 0.772 for the first model. Those were 0.864, 0.930, 0.866, and 0.897 for the second model. A total of 38.2% and 40.3% of the original videos could be clearly distinguished by the deep learning models when the naked eye made an inaccurate classification. This study is the first to demonstrate the feasibility and potential of deep learning models based on pre-chemotherapy CEUS videos in predicting the efficacy of neoadjuvant chemotherapy for pancreas cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助顺利的奇异果采纳,获得10
刚刚
刚刚
zoro完成签到,获得积分10
1秒前
顾矜应助吴军霄采纳,获得10
2秒前
2秒前
5秒前
南宫问天发布了新的文献求助10
6秒前
橙子完成签到,获得积分10
6秒前
7秒前
共享精神应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
我是老大应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
10秒前
科目三应助灵梦柠檬酸采纳,获得10
11秒前
赵文悦完成签到,获得积分10
11秒前
11秒前
小马甲应助橙子采纳,获得10
13秒前
13秒前
古往今来应助失眠的莫英采纳,获得20
13秒前
water应助dd采纳,获得10
14秒前
14秒前
15秒前
16秒前
Ava应助DJ采纳,获得10
16秒前
18秒前
18秒前
water应助iMoney采纳,获得10
18秒前
18秒前
Owen应助杨123采纳,获得10
20秒前
上官若男应助饱满的醉山采纳,获得10
20秒前
21秒前
小二郎应助Ru采纳,获得10
22秒前
vvvv发布了新的文献求助30
22秒前
23秒前
baifeicao完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982367
求助须知:如何正确求助?哪些是违规求助? 3525972
关于积分的说明 11229581
捐赠科研通 3263807
什么是DOI,文献DOI怎么找? 1801681
邀请新用户注册赠送积分活动 879994
科研通“疑难数据库(出版商)”最低求助积分说明 807767