Low performing pixel correction in computed tomography using deep learning

条纹 插值(计算机图形学) 人工智能 计算机科学 计算机视觉 迭代重建 像素 深度学习 图像缩放 探测器 平板探测器 医学影像学 模式识别(心理学) 图像处理 图像(数学) 物理 光学 电信
作者
Bhushan D. Patil,Utkarsh Agrawal,Vanika Singhal,Rajesh Langoju,Jiang Hsieh,Shobana Lakshminarasimhan,Bipul Das
标识
DOI:10.1117/12.2632273
摘要

Low performing pixels (LPP)/missing/bad channels in CT detectors, if left uncorrected cause ring and streak artifacts, structured non-uniformities, and make the reconstructed image unusable for diagnostic purposes. Many image processing methods are proposed to correct the ring and streak artifacts in reconstructed images, but it is more appropriate to correct the LPPs in sinogram domain as the errors are localized. Although Generative Adversarial Networks based sinogram inpainting methods have shown promise in interpolating the missing sinogram information, it is often observed that the reconstructed images lack diagnostic value especially in visualizing soft tissues with certain window width and level. In this work, we propose a deep-learning based solution that operates on the sinogram data to remove the distortions cause by LPPs. This method leverages the CT system geometry (including conjugate ray information) to learn the anatomy aware interpolation in the sinogram domain. We demonstrated the efficacy of the proposed method using data acquired on GE RevACT multi-slice CT system with flat-panel detector. We have considered 46 axial head scans out of them 42 sets are used for training and the remaining 4 sets for validation/testing. We have simulated isolated LPPs accounting for 10% of total channels in the central panel of the detector and corrected them using the proposed approach. Detailed statistical analysis has revealed that, approximately 5dB improvement in SNR is observed in both sinogram and reconstruction domain as compared to classical bicubic and Lagrange interpolation methods. Also, with reduction in ring and streak artifacts, the perceptual image quality is improved across all the test images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zw发布了新的文献求助10
1秒前
拓跋箴发布了新的文献求助10
3秒前
7秒前
8秒前
彩色的诗桃完成签到,获得积分10
8秒前
bkagyin应助石友瑶采纳,获得10
9秒前
Meyako应助丘露采纳,获得10
10秒前
11秒前
Hollow完成签到,获得积分10
11秒前
11秒前
YMH完成签到,获得积分10
11秒前
vickymr完成签到,获得积分10
12秒前
阿离完成签到,获得积分10
13秒前
哎哟我去完成签到,获得积分10
13秒前
14秒前
Ben完成签到 ,获得积分10
14秒前
论文通过完成签到,获得积分10
15秒前
可不完成签到 ,获得积分10
15秒前
拓跋箴完成签到,获得积分10
17秒前
雪崩发布了新的文献求助10
18秒前
dawn完成签到,获得积分10
18秒前
NexusExplorer应助王世缘采纳,获得10
19秒前
Once发布了新的文献求助10
19秒前
Mr.靠谱完成签到,获得积分20
19秒前
东风发布了新的文献求助10
20秒前
20秒前
21秒前
jinyuqian完成签到,获得积分10
22秒前
23秒前
24秒前
Once完成签到,获得积分10
25秒前
25秒前
yuaner发布了新的文献求助10
27秒前
难过的谷芹应助dawn采纳,获得10
28秒前
Mr.靠谱发布了新的文献求助10
29秒前
30秒前
东风完成签到,获得积分20
30秒前
万能图书馆应助雪崩采纳,获得10
31秒前
32秒前
思源应助灵巧的初瑶采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4778313
求助须知:如何正确求助?哪些是违规求助? 4109135
关于积分的说明 12711770
捐赠科研通 3831234
什么是DOI,文献DOI怎么找? 2113329
邀请新用户注册赠送积分活动 1136774
关于科研通互助平台的介绍 1020969