UIERL: Internal-External Representation Learning Network for Underwater Image Enhancement

计算机科学 代表(政治) 人工智能 水下 计算机视觉 政治学 政治 海洋学 地质学 法学
作者
Zhengyong Wang,Liquan Shen,Yihan Yu,Hui Yuan
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 9252-9267 被引量:1
标识
DOI:10.1109/tmm.2024.3387760
摘要

Underwater image enhancement (UIE) is a meaningful but challenging task, and many learning-based UIE methods have been proposed in recent years. Although much progress has been made, these methods still have two issues: (1) There exists a significant region-wise quality difference in a single underwater image due to the underwater imaging process, especially in regions with different scene depths. However, existing methods neglect this internal characteristic of underwater images, resulting in inferior performance; (2) Due to the uniqueness of the acquisition approach, underwater image acquisition tools usually capture multiple images in the same or similar scenes. Thus, the underwater images to be enhanced in practical usage are highly correlated. However, when processing a single image, existing methods do not consider the rich external information provided by the related images. There is still room for improvement in their performance. Motivated by these two aspects, we propose a novel internal-external representation learning (UIERL) network to better perform UIE tasks with internal and external information, simultaneously. In the internal representation learning stage, a new depth-based region feature guidance network is designed, including a region segmentation module based on scene depth to sense regions with different quality levels, followed by a region-wise space encoder module. With performing region-wise feature learning for regions with different quality separately, the network provides an effective guidance for global features and thus guides intra-image differentiated enhancement. In the external representation learning stage, we first propose an external information extraction network to mine the rich external information in the related images. Then, internal and external features interact with each other via the proposed external-assist-internal module (external features are updated with the help of internal features) and internal-assist-external module (internal features are updated with the help of external features). In this way, our UIERL fully explores the rich internal and external information to better enhance a single image. All results show that our method can achieve state-of-the-art performance on five benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酋长家大母鹅完成签到,获得积分10
1秒前
zhfliang发布了新的文献求助10
2秒前
2秒前
2秒前
冷静的飞瑶完成签到,获得积分20
2秒前
3秒前
重要凡阳完成签到 ,获得积分10
3秒前
星辰大海应助Zhangqg采纳,获得10
3秒前
3秒前
3秒前
3秒前
pureivy22发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
637发布了新的文献求助10
6秒前
6秒前
6秒前
qy发布了新的文献求助10
7秒前
twinkle发布了新的文献求助10
8秒前
9秒前
大白发布了新的文献求助10
9秒前
zhfliang完成签到,获得积分10
9秒前
勤劳的小吴完成签到,获得积分10
9秒前
小豆豆发布了新的文献求助10
10秒前
云端步伐完成签到,获得积分20
10秒前
东方楚才发布了新的文献求助10
11秒前
文文应助hyw采纳,获得10
11秒前
Ting发布了新的文献求助10
12秒前
坚定的骁完成签到,获得积分10
13秒前
14秒前
14秒前
羽毛发布了新的文献求助30
18秒前
18秒前
orixero应助神揽星辰入梦采纳,获得10
19秒前
百里健柏完成签到,获得积分10
20秒前
Zhangqg发布了新的文献求助10
20秒前
风是淡淡的云完成签到 ,获得积分10
20秒前
treetree的应助我爱亲柠檬采纳,获得40
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4372397
求助须知:如何正确求助?哪些是违规求助? 3869656
关于积分的说明 12063025
捐赠科研通 3512383
什么是DOI,文献DOI怎么找? 1927394
邀请新用户注册赠送积分活动 969408
科研通“疑难数据库(出版商)”最低求助积分说明 868265