HMSL: Source localization based on higher-order Markov propagation

订单(交换) 马尔可夫链 计算机科学 业务 机器学习 财务
作者
Chang Gong,Jichao Li,Liwei Qian,Siwei Li,Yang Zhi-wei,Kewei Yang
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:182: 114765-114765 被引量:2
标识
DOI:10.1016/j.chaos.2024.114765
摘要

The widespread use of the Internet and social media has brought us great convenience, but it has also exposed us to a lot of false information and malicious attacks. It is vital to accurately locate the source of the harmful spread to prevent it from spreading further. Most previous studies have assumed that the propagation path is memoryless and always the shortest path. This assumption implies the first-order Markov property of propagation paths. This paper takes into account the higher-order Markov property of propagation paths in the source localization problem. Firstly, the problem of source localization based on observers is formulated. Then, we introduce the higher-order Markov property of propagation paths into the problem and propose a reaction–synchronization–diffusion model to model the propagation process on the higher-order network. On this basis, we build a framework named source localization based on higher-order Markov propagation (HMSL), which is compatible with traditional algorithms for source localization. After that, we conducted experiments on a real dataset and found that the HMSL has significant improvement in the source localization compared to the first-order network. Sensitivity analysis indicates that the degree of improvement is significantly influenced by the probability of infection and the proportion of higher-order nodes. Furthermore, we investigated the reason behind the improvement and found that the first-order network creates paths that do not exist within the raw data. When these fake paths are shorter than actual propagation paths, the length of propagation paths and estimated activation time of observers will be underestimated, thus decreasing the accuracy of source localization. The HMSL framework can solve this problem effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
susan发布了新的文献求助10
刚刚
2秒前
斯文败类应助dungeon采纳,获得10
3秒前
NatureLee完成签到 ,获得积分10
4秒前
小二郎应助凌凌采纳,获得10
4秒前
在水一方应助柚木采纳,获得10
4秒前
4秒前
5秒前
6秒前
ghmghm9910完成签到,获得积分10
6秒前
丘比特应助柒蕲七采纳,获得10
6秒前
6秒前
贪玩凡阳发布了新的文献求助30
6秒前
充电宝应助昕昕233采纳,获得20
7秒前
小米粥发布了新的文献求助10
7秒前
8秒前
乌兹,行应助zhuchenglu采纳,获得10
8秒前
志123发布了新的文献求助10
8秒前
祈祈完成签到 ,获得积分10
9秒前
科研通AI2S应助NXK采纳,获得10
9秒前
Woo完成签到,获得积分10
9秒前
倩Q发布了新的文献求助10
10秒前
深情安青应助ghmghm9910采纳,获得30
10秒前
科研通AI2S应助想疯采纳,获得10
10秒前
susan完成签到,获得积分10
10秒前
菡123456完成签到,获得积分20
10秒前
10秒前
^_^发布了新的文献求助10
10秒前
今后应助阳12123采纳,获得10
11秒前
at发布了新的文献求助10
11秒前
陈子皮boy发布了新的文献求助10
12秒前
李爱国应助ccccchen采纳,获得10
12秒前
12秒前
12秒前
13秒前
Joyful完成签到,获得积分10
13秒前
科研通AI5应助言言采纳,获得10
13秒前
14秒前
14秒前
mianmian完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796700
求助须知:如何正确求助?哪些是违规求助? 3341852
关于积分的说明 10308555
捐赠科研通 3058479
什么是DOI,文献DOI怎么找? 1678271
邀请新用户注册赠送积分活动 805928
科研通“疑难数据库(出版商)”最低求助积分说明 762868