DeepQCT: Predicting fragility fracture from high-resolution peripheral quantitative CT using deep learning

脆弱性 断裂(地质) 外围设备 高分辨率 脆性骨折 人工智能 定量计算机断层扫描 计算机科学 心理学 地质学 医学 岩土工程 遥感 物理 内科学 骨质疏松症 骨密度 骨矿物 热力学 操作系统
作者
Fangyuan Chen,Lijia Cui,Qiao Jin,Yushuo Wu,Jiaqi Li,Yan Jiang,Yue Chi,Ruizhi Jiajue,Wei Liu,Wei Yu,Qianqian Pang,Ou Wang,Mei Li,Xiaoping Xing,Xuegong Zhang,Weibo Xia
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.04.01.24305147
摘要

Background Osteoporosis is prevalent in elderly women, which causes fragility fracture and hence increased mortality and morbidity. Predicting osteoporotic fracture risk is both clinically-beneficial and cost-effective. However, traditional tools using clinical factors and bone mineral density (BMD) fail to reflect bone microstructure. Here we aim to use high-resolution peripheral quantitative CT (HR-pQCT) images to construct deep-learning models which predict fragility fracture history in elderly Chinese women. Methods We used ChiVOS, a community-based national cohort of 2,664 Chinese elderly women. Demographic data, BMD, and HR-pQCT from 216 patients were used to construct three groups of models: BMD, pQCT-index, and DeepQCT. For DeepQCT, we used ResNet34 as classifier, and logistic regression for late fusion. Models were developed using 6-fold cross-validation in development set (90%, N=195), and tested in internal test set (10%, N=21). We applied unsupervised clustering on HR-pQCT indices to derive patient subgroups. Findings DeepQCT (best model AUC 0.86-0.94) was superior or similar to pQCT-index (best model AUC 0.8-0.93), which both outperformed BMD (best model AUC 0.54-0.78). Surprisingly, DeepQCT built from non-weight-bearing bones performed similarly to weight-bearing bones. Furthermore, two distinct patient groups were classified using HR-pQCT indices. The one with higher DeepQCT risk score showed lower volumetric BMD, bone more microarchitectural abnormalities, and had higher probability of osteoporosis and fragility fracture history. Interpretation DeepQCT scores and HR-pQCT-index permit early recognition of patients with high risk of fragility fracture. This established framework can be easily adapted for other diagnostic tasks using HR-pQCT scans, which promotes bone health management via digital medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助小鲁采纳,获得10
刚刚
zhoumaoyuan发布了新的文献求助10
1秒前
1秒前
1秒前
清风明月发布了新的文献求助10
1秒前
听话的采蓝完成签到,获得积分10
2秒前
QQ完成签到 ,获得积分20
3秒前
3秒前
wang完成签到 ,获得积分10
4秒前
科研通AI5应助Polary采纳,获得30
4秒前
杨杨杨发布了新的文献求助20
4秒前
Hanaooooo发布了新的文献求助10
4秒前
Clearday发布了新的文献求助10
5秒前
5秒前
Stella发布了新的文献求助10
5秒前
无花果应助接受所有饼干采纳,获得10
6秒前
7秒前
Liuyicong发布了新的文献求助10
8秒前
8秒前
Beryll完成签到 ,获得积分10
9秒前
12秒前
zhoumaoyuan完成签到,获得积分20
12秒前
12秒前
13秒前
细腻听白发布了新的文献求助30
14秒前
Qingzhu完成签到,获得积分10
14秒前
深情安青应助开心太阳采纳,获得10
14秒前
纤凝完成签到 ,获得积分10
15秒前
oysp完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
馆长举报行止求助涉嫌违规
16秒前
Hanaooooo完成签到,获得积分10
16秒前
kk应助佳期如梦采纳,获得50
17秒前
小菜鸡大梦想完成签到,获得积分10
17秒前
17秒前
现代访梦发布了新的文献求助10
17秒前
能行能行能行完成签到,获得积分20
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4810502
求助须知:如何正确求助?哪些是违规求助? 4124019
关于积分的说明 12760257
捐赠科研通 3860163
什么是DOI,文献DOI怎么找? 2124908
邀请新用户注册赠送积分活动 1146616
关于科研通互助平台的介绍 1039991