电催化剂
化学
块(置换群论)
电荷(物理)
氧还原反应
还原(数学)
兴奋剂
氧气
氧还原
材料科学
物理化学
电极
电化学
物理
光电子学
几何学
数学
量子力学
有机化学
作者
Linfeng Xie,Jing Wang,Kun Wang,Zixu He,Jiashun Liang,Zijie Lin,Tanyuan Wang,Ruiguo Cao,Feng Yang,Zhao Cai,Yunhui Huang,Qing Li
标识
DOI:10.1002/anie.202407658
摘要
Abstract Metallene is considered as an emerging family of electrocatalysts due to its atomically layered structure and unique surface stress. Here we propose a strategy to modulate the Bader charge transfer (BCT) between Pd surface and oxygenated intermediates via p ‐ d electronic interaction by introducing single‐atom p ‐block metal (M=In, Sn, Pb, Bi) into Pd metallene nanosheets towards efficient oxygen reduction reaction (ORR). X‐ray absorption and photoelectron spectroscopy suggests that doping p ‐block metals could facilitate electron transfer to Pd sites and thus downshift the d ‐band center of Pd and weaken the adsorption energy of O intermediates. Among them, the developed Bi−Pd metallene shows extraordinarily high ORR mass activity of 11.34 A mg Pd −1 and 0.86 A mg Pd −1 at 0.9 V and 0.95 V in alkaline solution, respectively, representing the best Pd‐based ORR electrocatalysts ever reported. In the cathode of a Zinc‐air battery, Bi−Pd metallene could achieve an open‐circuit voltage of 1.546 V and keep stable for 760 h at 10 mA cm −2 . Theoretical calculations suggest that the BCT between Pd surface and *OO intermediates greatly affects the bond length between them ( d Pd‐*OO ) and Bi doping could appropriately reduce the amount of BCT and stretch the d Pd‐*OO, thus enhancing the ORR activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI