High‐precision identification of highly similar Pinelliae Rhizoma and adulterated Rhizoma pinelliae pedatisectae through deep neural networks based on vision transformers

人工智能 人工神经网络 鉴定(生物学) 模式识别(心理学) 计算机科学 生物 植物
作者
Rong Chen,Ying Zhang,Wenjun Song,Tingting Zhao,Jiu‐Ning Wang,Y. Y. Zhao
出处
期刊:Journal of Food Science [Wiley]
卷期号:89 (11): 7372-7379
标识
DOI:10.1111/1750-3841.17440
摘要

Abstract Pinelliae Rhizoma is a key ingredient in botanical supplements and is often adulterated by Rhizoma Pinelliae Pedatisectae , which is similar in appearance but less expensive. Accurate identification of these materials is crucial for both scientific and commercial purposes. Traditional morphological identification relies heavily on expert experience and is subjective, while chemical analysis and molecular biological identification are typically time consuming and labor intensive. This study aims to employ a simpler, faster, and non‐invasive image recognition technique to distinguish between these two highly similar plant materials. In the realm of image recognition, we aimed to utilize the vision transformer (ViT) algorithm, a cutting‐edge image recognition technology, to differentiate these materials. All samples were verified using DNA molecular identification before image analysis. The result demonstrates that the ViT algorithm achieves a classification accuracy exceeding 94%, significantly outperforming the convolutional neural network model's 60%–70% accuracy. This highlights the efficiency of this technology in identifying plant materials with similar appearances. This study marks the pioneer work of the ViT algorithm to such a challenging task, showcasing its potential for precise botanical material identification and setting the stage for future advancements in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一个发布了新的文献求助10
1秒前
1秒前
wlz完成签到,获得积分10
1秒前
假面绅士发布了新的文献求助10
2秒前
Jeneration完成签到 ,获得积分10
3秒前
qczgzly发布了新的文献求助10
4秒前
寒冷雨竹完成签到,获得积分10
4秒前
maohui完成签到,获得积分10
4秒前
科研通AI5应助sjh采纳,获得30
5秒前
五條小羊完成签到 ,获得积分10
6秒前
十一发布了新的文献求助10
6秒前
昏睡的妙梦完成签到 ,获得积分10
7秒前
7秒前
qczgzly完成签到,获得积分10
11秒前
哭泣朝雪发布了新的文献求助10
13秒前
寒冷煎饼完成签到,获得积分10
13秒前
烟花应助高序采纳,获得10
16秒前
16秒前
眼睛大迎波完成签到,获得积分10
17秒前
kk完成签到,获得积分10
17秒前
20秒前
陈少华完成签到 ,获得积分10
22秒前
song发布了新的文献求助30
23秒前
12356完成签到,获得积分10
23秒前
一个完成签到,获得积分10
24秒前
25秒前
星辰大海应助poki采纳,获得10
26秒前
26秒前
汉堡包应助ardejiang采纳,获得10
29秒前
高序发布了新的文献求助10
29秒前
w小主发布了新的文献求助10
30秒前
花凉发布了新的文献求助50
31秒前
31秒前
乱武完成签到,获得积分20
31秒前
小蘑菇应助文艺的芫采纳,获得10
32秒前
Owen应助杨程蛟采纳,获得10
33秒前
十一完成签到,获得积分10
34秒前
沉默的板凳完成签到,获得积分20
34秒前
默默千亦完成签到,获得积分10
35秒前
清爽幻竹完成签到,获得积分10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785666
求助须知:如何正确求助?哪些是违规求助? 3331141
关于积分的说明 10250187
捐赠科研通 3046525
什么是DOI,文献DOI怎么找? 1672127
邀请新用户注册赠送积分活动 800994
科研通“疑难数据库(出版商)”最低求助积分说明 759970