Surface Science and Engineering for Electrochemical Materials

电化学 曲面(拓扑) 表面工程 科学与工程 工程物理 纳米技术 材料科学 化学 工程类 工程伦理学 数学 物理化学 几何学 电极
作者
Zhiming Liang,Mohammad Sufiyan Nafis,Dakota Rodriguez,Chunmei Ban
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (21): 3102-3112 被引量:5
标识
DOI:10.1021/acs.accounts.4c00433
摘要

ConspectusIn electrochemical energy storage systems, the reversible storage capacity of battery materials often degrades due to parasitic reactions at the electrode-electrolyte interface, transitional metal dissolution, and metallic dendrite growth at the surface. Surface engineering techniques offer the opportunity to modify the composition and structure of a surface, thereby enabling control over chemical reactions occurring at the surface and manipulating chemical interactions at the solid-solid or solid-liquid interface. These modifications can help stabilize the surface of electrode materials and prevent unwanted reactions with electrolytes without changing the original properties of the bulk structure. This allows for achieving full theoretical capacity and maximizing battery material capacity retention with minimal overpotentials. In the past decade, our teams have been working on developing a variety of surface engineering techniques. These include applying atomic and molecular layer deposition (ALD and MLD), templating, doping, and coating via wet-chemical processes to stabilize the surfaces of electrode materials. The aim is to mitigate parasitic side-reactions without impeding charge transfer kinetics, suppress dendrite growth, and ultimately improve the electrode performance.This Account summarizes the research conducted in our research laboratory with an aim to improve battery cycling durability and efficiency by modifying electrode surfaces. We have employed techniques such as ALD, MLD, templating, and wet-chemical processes to illustrate how the stabilized surface improves the performance of lithium-ion (Li-ion), solid-state electrolytes and magnesium-metal (Mg-metal) batteries. For instance, by applying ultrathin layers of inorganic (e.g., Al2O3) or organic-inorganic coatings (e.g., alucone, lithicone, and polyamides) to the surface of LiNixMnyCozO2 (x + y + z = 1, NMC) and silicon (Si) electrodes─usually just a few angstroms or nanometers thick─we have observed notable improvements in cycling efficiency and durability. When using ultrathick electrodes, the traditional electrode fabrication has a problem with high tortuosity, which hinders both rate capability and long-term cycling. To solve this issue, three-dimensional templates have been employed to reduce electrode tortuosity, enabling high-rate performance and long-term cycling. In the case of Mg-metal batteries, the buildup of an insulating MgO layer due to side reactions with electrolytes blocks Mg2+ ion transport, which can ultimately cause the battery to fail. To address this issue, we have developed an artificial solid-electrolyte interface using cyclized polyacrylonitrile and magnesium trifluoromethanesulfonate. This interface prevents the reduction of the carbonate electrolyte while allowing Mg2+ diffusion, ultimately boosting overall cell performance.This Account also discusses the significance of choosing suitable materials and effective surface engineering methods with the objective of enhancing surface properties while preserving the bulk properties of the electrodes. It is believed that surface modification and engineering can not only significantly improve the electrochemical performance of existing battery materials but also facilitate the development of new battery materials that were previously incompatible with current electrolytes. By highlighting these aspects, this Account underscores the transformative potential of surface modification and engineering in battery technology, paving the way for future innovations in energy storage solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小王同学完成签到 ,获得积分10
1秒前
万能图书馆应助LLL采纳,获得10
5秒前
明理冷梅完成签到 ,获得积分10
6秒前
wry完成签到,获得积分10
6秒前
哒哒完成签到,获得积分10
7秒前
jstagey完成签到 ,获得积分10
7秒前
Sylvia41完成签到,获得积分10
8秒前
生动的保温杯完成签到,获得积分10
9秒前
zhangfuchao完成签到,获得积分10
9秒前
9秒前
在水一方应助小线团黑桃采纳,获得10
9秒前
10秒前
醉眠完成签到 ,获得积分10
10秒前
12秒前
lglsp发布了新的文献求助10
12秒前
脑洞疼应助xuanjiawu采纳,获得10
12秒前
13秒前
晫猗完成签到,获得积分10
13秒前
13秒前
meng完成签到,获得积分10
14秒前
zzznznnn发布了新的文献求助10
15秒前
伶俐怀亦发布了新的文献求助10
17秒前
17秒前
124完成签到 ,获得积分10
17秒前
18秒前
不爱吃鱼完成签到 ,获得积分10
19秒前
YAYA发布了新的文献求助10
20秒前
充电宝应助wenbo采纳,获得10
21秒前
万能图书馆应助孙傲采纳,获得10
21秒前
瓜瓜发布了新的文献求助10
22秒前
五原日落完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
小翼应助lxj采纳,获得10
23秒前
25秒前
小马发布了新的文献求助30
25秒前
MQueen完成签到,获得积分10
25秒前
Riggle G完成签到,获得积分0
26秒前
jim完成签到 ,获得积分10
26秒前
宇森完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604106
求助须知:如何正确求助?哪些是违规求助? 4688956
关于积分的说明 14857141
捐赠科研通 4696700
什么是DOI,文献DOI怎么找? 2541175
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851