亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Surface Science and Engineering for Electrochemical Materials

电化学 曲面(拓扑) 表面工程 科学与工程 工程物理 纳米技术 材料科学 化学 工程类 工程伦理学 数学 物理化学 几何学 电极
作者
Zhiming Liang,Mohammad Sufiyan Nafis,Dakota Rodriguez,Chunmei Ban
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (21): 3102-3112 被引量:1
标识
DOI:10.1021/acs.accounts.4c00433
摘要

ConspectusIn electrochemical energy storage systems, the reversible storage capacity of battery materials often degrades due to parasitic reactions at the electrode–electrolyte interface, transitional metal dissolution, and metallic dendrite growth at the surface. Surface engineering techniques offer the opportunity to modify the composition and structure of a surface, thereby enabling control over chemical reactions occurring at the surface and manipulating chemical interactions at the solid–solid or solid–liquid interface. These modifications can help stabilize the surface of electrode materials and prevent unwanted reactions with electrolytes without changing the original properties of the bulk structure. This allows for achieving full theoretical capacity and maximizing battery material capacity retention with minimal overpotentials. In the past decade, our teams have been working on developing a variety of surface engineering techniques. These include applying atomic and molecular layer deposition (ALD and MLD), templating, doping, and coating via wet-chemical processes to stabilize the surfaces of electrode materials. The aim is to mitigate parasitic side-reactions without impeding charge transfer kinetics, suppress dendrite growth, and ultimately improve the electrode performance.This Account summarizes the research conducted in our research laboratory with an aim to improve battery cycling durability and efficiency by modifying electrode surfaces. We have employed techniques such as ALD, MLD, templating, and wet-chemical processes to illustrate how the stabilized surface improves the performance of lithium-ion (Li-ion), solid-state electrolytes and magnesium-metal (Mg-metal) batteries. For instance, by applying ultrathin layers of inorganic (e.g., Al2O3) or organic–inorganic coatings (e.g., alucone, lithicone, and polyamides) to the surface of LiNixMnyCozO2 (x + y + z = 1, NMC) and silicon (Si) electrodes─usually just a few angstroms or nanometers thick─we have observed notable improvements in cycling efficiency and durability. When using ultrathick electrodes, the traditional electrode fabrication has a problem with high tortuosity, which hinders both rate capability and long-term cycling. To solve this issue, three-dimensional templates have been employed to reduce electrode tortuosity, enabling high-rate performance and long-term cycling. In the case of Mg-metal batteries, the buildup of an insulating MgO layer due to side reactions with electrolytes blocks Mg2+ ion transport, which can ultimately cause the battery to fail. To address this issue, we have developed an artificial solid-electrolyte interface using cyclized polyacrylonitrile and magnesium trifluoromethanesulfonate. This interface prevents the reduction of the carbonate electrolyte while allowing Mg2+ diffusion, ultimately boosting overall cell performance.This Account also discusses the significance of choosing suitable materials and effective surface engineering methods with the objective of enhancing surface properties while preserving the bulk properties of the electrodes. It is believed that surface modification and engineering can not only significantly improve the electrochemical performance of existing battery materials but also facilitate the development of new battery materials that were previously incompatible with current electrolytes. By highlighting these aspects, this Account underscores the transformative potential of surface modification and engineering in battery technology, paving the way for future innovations in energy storage solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
54秒前
失眠天亦应助虚幻的赛君采纳,获得10
1分钟前
无花果应助一叶舟采纳,获得10
1分钟前
3分钟前
3分钟前
Jasen完成签到 ,获得积分10
3分钟前
知行者完成签到 ,获得积分10
5分钟前
Li完成签到,获得积分10
5分钟前
Akim应助小平采纳,获得10
5分钟前
5分钟前
小平发布了新的文献求助10
5分钟前
5分钟前
一叶舟发布了新的文献求助10
6分钟前
一叶舟完成签到,获得积分10
6分钟前
华仔应助科研通管家采纳,获得10
6分钟前
赘婿应助科研通管家采纳,获得10
6分钟前
7分钟前
7分钟前
7分钟前
小羊完成签到,获得积分10
9分钟前
小羊发布了新的文献求助10
9分钟前
所所应助Xin采纳,获得10
9分钟前
科研通AI5应助小羊采纳,获得10
9分钟前
10分钟前
10分钟前
Xin发布了新的文献求助10
10分钟前
哈哈哈完成签到,获得积分10
10分钟前
10分钟前
我是老大应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
Xin完成签到,获得积分10
10分钟前
水水水完成签到 ,获得积分10
11分钟前
为你钟情完成签到 ,获得积分10
11分钟前
11分钟前
11分钟前
noss发布了新的文献求助10
11分钟前
小蘑菇应助依然灬聆听采纳,获得10
13分钟前
科研通AI5应助大力的千筹采纳,获得10
13分钟前
耳东陈完成签到 ,获得积分10
13分钟前
13分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779152
求助须知:如何正确求助?哪些是违规求助? 3324759
关于积分的说明 10219855
捐赠科研通 3039890
什么是DOI,文献DOI怎么找? 1668476
邀请新用户注册赠送积分活动 798658
科研通“疑难数据库(出版商)”最低求助积分说明 758503