Automated Analysis of Changes in Privacy Policies: A Structured Self-Attentive Sentence Embedding Approach

判决 嵌入 隐私政策 计算机科学 自然语言处理 互联网隐私 人工智能 业务 心理学 计算机安全 信息隐私 知识管理 人机交互
作者
Fangyu Lin,Laura Brandimarte,Hsinchun Chen,Sagar Samtani,Hongyi Zhu
出处
期刊:Management Information Systems Quarterly [MIS Quarterly]
被引量:9
标识
DOI:10.25300/misq/2024/17115
摘要

The increasing societal concern for consumer information privacy has led to the enforcement of privacy regulations worldwide. In an effort to adhere to privacy regulations such as General Data Protection Regulation (GDPR), many companies’ privacy policies have become increasingly lengthy and complex. In this study, we adopted the computational design science paradigm to design a novel privacy policy evolution analytics framework to help identify how companies change and present their privacy policies based on privacy regulations. The framework includes a Self-Attentive Annotation System (SAAS) that automatically annotates paragraph-length segments in privacy policies to help stakeholders identify data practices of interest for further investigation. We rigorously evaluated SAAS against state-of-the-art Machine Learning (ML) and Deep Learning (DL)-based methods on a well-established privacy policy dataset, OPP-115. SAAS outperformed conventional ML and DL models in terms of F1-score by statistically significant margins. We demonstrate the proposed framework’s practical utility with an in-depth case study of GDPR’s impact on Amazon’s privacy policies. The case study results indicate that Amazon’s post-GDPR privacy policy potentially violates a fundamental principle of GDPR by causing consumers to exert more effort to find information about first-party data collection. Given the increasing importance of consumer information privacy, the proposed framework has important implications for regulators and companies. We discuss several design principles followed by the SAAS that can help guide future design science-based e-commerce, health, and privacy research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gyh关注了科研通微信公众号
1秒前
帕尼灬尼完成签到,获得积分10
2秒前
繁荣的之柔完成签到,获得积分10
3秒前
复杂的方盒完成签到 ,获得积分10
4秒前
酷波er应助SCI采纳,获得10
4秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
8秒前
ZRui完成签到,获得积分10
8秒前
CipherSage应助科研通管家采纳,获得20
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
惟依发布了新的文献求助10
10秒前
10秒前
红薯干完成签到,获得积分10
10秒前
orixero应助王怡珺采纳,获得10
11秒前
桐桐应助ZRui采纳,获得10
12秒前
Pupil发布了新的文献求助10
13秒前
SCI发布了新的文献求助10
14秒前
无花果应助micaixing2006采纳,获得10
15秒前
hfy完成签到,获得积分10
17秒前
19秒前
19秒前
充电宝应助满意的惮采纳,获得10
19秒前
汉堡包应助优秀的半梅采纳,获得10
20秒前
李爱国应助song采纳,获得10
23秒前
猫猫不挑食完成签到,获得积分20
24秒前
24秒前
25秒前
008发布了新的文献求助10
25秒前
爱听歌笑寒完成签到,获得积分10
25秒前
26秒前
Hello应助SCI采纳,获得10
26秒前
gyh发布了新的文献求助10
29秒前
baize发布了新的文献求助10
29秒前
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778882
求助须知:如何正确求助?哪些是违规求助? 3324413
关于积分的说明 10218351
捐赠科研通 3039488
什么是DOI,文献DOI怎么找? 1668198
邀请新用户注册赠送积分活动 798570
科研通“疑难数据库(出版商)”最低求助积分说明 758440