New combined Inverse-QSAR and molecular docking method for scaffold-based drug discovery

药物发现 数量结构-活动关系 计算机科学 对接(动物) 脚手架 计算生物学 化学 数据挖掘 机器学习 生物 医学 数据库 生物化学 护理部
作者
Rafik Menacer,Saad Bouchekioua,Saida Meliani,Nadjah Belattar
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:180: 108992-108992 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108992
摘要

Computer-aided drug discovery plays a vital role in developing novel medications for various diseases. The COVID-19 pandemic has heightened the need for innovative approaches to design lead compounds with the potential to become effective drugs. Specifically, designing promising inhibitors of the SARS-CoV-2 main protease (Mpro) is crucial, as it plays a key role in viral replication. Phytochemicals, primarily flavonoids and flavonols from medicinal plants, were screened. Fifty small molecules were selected for molecular docking analysis against SARS-CoV-2 Mpro (PDB ID: 6LU7). Binding energies and interactions were analyzed and compared to those of the anti-SARS-CoV-2 inhibitor Nirmatrelvir. Using these 50 structures as a training set, a QSAR model was built employing simple, reversible topological descriptors. An inverse-QSAR analysis was then performed on 2⁹ = 512 hydroxyl combinations at nine possible positions on the flavone and flavonol scaffold. The model predicted three novel, promising compounds exhibiting the most favorable binding energies (-8.5 kcal/mol) among the 512 possible hydroxyl combinations: 3,6,7,2',4'-pentahydroxyflavone (PF9), 6,7,2',4'-tetrahydroxyflavone (PF11), and 3,6,7,4'-tetrahydroxyflavone (PF15). Molecular dynamics (MD) simulations demonstrated the stability of the PF9/Mpro complex over 300 ns of simulation. These predicted structures, reported here for the first time, warrant synthesis and further evaluation of their biological activity through in vitro and in vivo studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旷野发布了新的文献求助20
1秒前
1秒前
张航发布了新的文献求助10
2秒前
YANBINGHANG发布了新的文献求助30
2秒前
wenwen完成签到,获得积分10
2秒前
ding应助未晞采纳,获得10
3秒前
3秒前
4秒前
轩辕唯雪发布了新的文献求助10
6秒前
JJS发布了新的文献求助10
7秒前
食肉动物完成签到,获得积分10
7秒前
大尾尾发布了新的文献求助10
8秒前
8秒前
张航完成签到,获得积分10
9秒前
10秒前
传奇3应助花花采纳,获得10
11秒前
认真代曼发布了新的文献求助10
12秒前
Cu发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
非而者厚应助JJS采纳,获得10
14秒前
Huang波完成签到,获得积分10
15秒前
领导范儿应助小王采纳,获得10
15秒前
16秒前
缪欣桐完成签到,获得积分20
16秒前
16秒前
大尾尾完成签到,获得积分10
17秒前
17秒前
折耳根榨汁清凉补完成签到,获得积分10
18秒前
18秒前
18秒前
食肉动物发布了新的文献求助10
19秒前
Benjamin完成签到,获得积分10
19秒前
21秒前
Ren应助旷野采纳,获得10
21秒前
温柔寄柔发布了新的文献求助30
21秒前
丘比特应助Zz采纳,获得10
21秒前
朝阳应助轩辕唯雪采纳,获得30
21秒前
斑马睡不着完成签到,获得积分10
22秒前
f00f发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4831606
求助须知:如何正确求助?哪些是违规求助? 4136606
关于积分的说明 12803710
捐赠科研通 3879297
什么是DOI,文献DOI怎么找? 2133725
邀请新用户注册赠送积分活动 1153830
关于科研通互助平台的介绍 1052211