人工智能
计算机科学
计算机视觉
点云
激光雷达
随机梯度下降算法
一般化
相互信息
立体摄像机
梯度下降
校准
旋转矩阵
正交性
旋转(数学)
机器人学
人工神经网络
机器人
遥感
数学
地理
数学分析
统计
几何学
作者
Matthias Hermann,Dennis GrieBer,Bernhard Gundel,Daniel Dold,Georg Umlauf,Matthias Franz
标识
DOI:10.23919/fusion49751.2022.9841290
摘要
Targetless Lidar-camera registration is a repeating task in many computer vision and robotics applications and requires computing the extrinsic pose of a point cloud with respect to a camera or vice-versa. Existing methods based on learning or optimization lack either generalization capabilities or accuracy. Here, we propose a combination of pre-training and optimization using a neural network-based mutual information estimation technique (MINE [1]). This construction allows back-propagating the gradient to the calibration parameters and enables stochastic gradient descent. To ensure orthogonality constraints with respect to the rotation matrix we incorporate Lie-group techniques. Furthermore, instead of optimizing on entire images, we operate on local patches that are extracted from the temporally synchronized projected Lidar points and camera frames. Our experiments show that this technique not only improves over existing techniques in terms of accuracy, but also shows considerable generalization capabilities towards new Lidar-camera configurations.
科研通智能强力驱动
Strongly Powered by AbleSci AI