亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-Supervised Representation Learning for Video Quality Assessment

计算机科学 人工智能 特征学习 机器学习 视频质量 代表(政治) 学习迁移 模式识别(心理学) 公制(单位) 运营管理 政治 政治学 法学 经济
作者
Shaojie Jiang,Qingbing Sang,Zongyao Hu,Lixiong Liu
出处
期刊:IEEE Transactions on Broadcasting [Institute of Electrical and Electronics Engineers]
卷期号:69 (1): 118-129 被引量:1
标识
DOI:10.1109/tbc.2022.3197904
摘要

No-reference (NR) video quality assessment (VQA) is a challenging problem due to the difficulty in model training caused by insufficient annotation samples. Previous work commonly utilizes transfer learning to directly migrate pre-trained models on the image database, which suffers from domain inadaptation. Recently, self-supervised representation learning has become a hot spot for the independence of large-scale labeled data. However, existing self-supervised representation learning method only considers the distortion types and contents of the video, there needs to investigate the intrinsic properties of videos for the VQA task. To amend this, here we propose a novel multi-task self-supervised representation learning framework to pre-train a video quality assessment model. Specifically, we consider the effects of distortion degrees, distortion types, and frame rates on the perceived quality of videos, and utilize them as guidance to generate self-supervised samples and labels. Then, we optimize the ability of the VQA model in capturing spatio-temporal differences between the original video and the distorted version using three pretext tasks. The resulting framework not only eases the requirements for the quality of the original video but also benefits from the self-supervised labels as well as the Siamese network. In addition, we propose a Transformer-based VQA model, where short-term spatio-temporal dependencies of videos are modeled by 3D-CNN and 2D-CNN, and then the long-term spatio-temporal dependencies are modeled by Transformer because of its excellent long-term modeling capability. We evaluated the proposed method on four public video quality assessment databases and found that it is competitive with all compared VQA algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皆可发布了新的文献求助10
5秒前
天幕发布了新的文献求助10
11秒前
吃了吃了完成签到,获得积分10
13秒前
脑洞疼应助JazzWon采纳,获得10
16秒前
17秒前
Evelyn发布了新的文献求助10
23秒前
32秒前
FashionBoy应助天幕采纳,获得10
41秒前
50秒前
51秒前
58秒前
JM发布了新的文献求助10
1分钟前
1分钟前
斯文败类应助grace135采纳,获得10
1分钟前
Noob_saibot完成签到,获得积分10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
Liufgui应助科研通管家采纳,获得10
1分钟前
BW完成签到,获得积分10
1分钟前
caca完成签到,获得积分0
1分钟前
打打应助陈诚1111采纳,获得10
1分钟前
1分钟前
陈诚1111发布了新的文献求助10
1分钟前
1分钟前
Danielwill发布了新的文献求助10
2分钟前
李爱国应助Danielwill采纳,获得10
2分钟前
玉米完成签到,获得积分20
2分钟前
Danielwill完成签到,获得积分10
2分钟前
Kirito给开心的兔子的求助进行了留言
2分钟前
爆米花应助xuzb采纳,获得10
2分钟前
小苗儿完成签到,获得积分10
2分钟前
柯语雪完成签到 ,获得积分10
2分钟前
李姝完成签到 ,获得积分10
2分钟前
KSung完成签到 ,获得积分10
2分钟前
3分钟前
xuzb完成签到,获得积分10
3分钟前
primavere完成签到,获得积分20
3分钟前
3分钟前
3分钟前
xuzb发布了新的文献求助10
3分钟前
CipherSage应助eghiefefe采纳,获得10
3分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4067195
求助须知:如何正确求助?哪些是违规求助? 3606218
关于积分的说明 11450803
捐赠科研通 3327641
什么是DOI,文献DOI怎么找? 1829475
邀请新用户注册赠送积分活动 899393
科研通“疑难数据库(出版商)”最低求助积分说明 819595