Identification of immune-related endoplasmic reticulum stress genes in sepsis using bioinformatics and machine learning

败血症 内质网 免疫系统 基因 生物 未折叠蛋白反应 转录组 免疫学 计算生物学 基因表达 生物信息学 遗传学
作者
Ting Gong,Yongbin Liu,Zhiyuan Tian,Min Zhang,Hejun Gao,Zhiyong Peng,Shuang Yin,Chi Wai Cheung,Youtan Liu
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:13 被引量:19
标识
DOI:10.3389/fimmu.2022.995974
摘要

Sepsis-induced apoptosis of immune cells leads to widespread depletion of key immune effector cells. Endoplasmic reticulum (ER) stress has been implicated in the apoptotic pathway, although little is known regarding its role in sepsis-related immune cell apoptosis. The aim of this study was to develop an ER stress-related prognostic and diagnostic signature for sepsis through bioinformatics and machine learning algorithms on the basis of the differentially expressed genes (DEGs) between healthy controls and sepsis patients.The transcriptomic datasets that include gene expression profiles of sepsis patients and healthy controls were downloaded from the GEO database. The immune-related endoplasmic reticulum stress hub genes associated with sepsis patients were identified using the new comprehensive machine learning algorithm and bioinformatics analysis which includes functional enrichment analyses, consensus clustering, weighted gene coexpression network analysis (WGCNA), and protein-protein interaction (PPI) network construction. Next, the diagnostic model was established by logistic regression and the molecular subtypes of sepsis were obtained based on the significant DEGs. Finally, the potential diagnostic markers of sepsis were screened among the significant DEGs, and validated in multiple datasets.Significant differences in the type and abundance of infiltrating immune cell populations were observed between the healthy control and sepsis patients. The immune-related ER stress genes achieved strong stability and high accuracy in predicting sepsis patients. 10 genes were screened as potential diagnostic markers for sepsis among the significant DEGs, and were further validated in multiple datasets. In addition, higher expression levels of SCAMP5 mRNA and protein were observed in PBMCs isolated from sepsis patients than healthy donors (n = 5).We established a stable and accurate signature to evaluate the diagnosis of sepsis based on the machine learning algorithms and bioinformatics. SCAMP5 was preliminarily identified as a diagnostic marker of sepsis that may affect its progression by regulating ER stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
丫丫完成签到 ,获得积分10
刚刚
充电宝应助汕头凯奇采纳,获得10
1秒前
理理应助林洁佳采纳,获得10
1秒前
1秒前
Piang发布了新的文献求助10
2秒前
Jason完成签到,获得积分10
2秒前
健壮慕梅发布了新的文献求助10
3秒前
研友_Z1450n完成签到,获得积分20
3秒前
年轻人应助zq采纳,获得10
3秒前
小羊苏西发布了新的文献求助10
4秒前
yangshu发布了新的文献求助10
4秒前
4秒前
打打应助美满凌瑶采纳,获得10
5秒前
6秒前
从容苡发布了新的文献求助10
6秒前
悦耳炳关注了科研通微信公众号
6秒前
今后应助健壮慕梅采纳,获得10
6秒前
asipilin完成签到,获得积分10
8秒前
zcx完成签到,获得积分10
9秒前
9秒前
Shane完成签到,获得积分10
9秒前
9秒前
LILIYANYEAH完成签到 ,获得积分10
10秒前
坦率的匪举报李谢谢求助涉嫌违规
10秒前
哼哼哈嘿发布了新的文献求助10
11秒前
柯亦云应助wisliudj采纳,获得200
11秒前
狗大王完成签到,获得积分10
12秒前
甜蜜的楷瑞应助0313采纳,获得10
13秒前
navvv完成签到,获得积分10
13秒前
伊一完成签到,获得积分10
13秒前
小马甲应助非常可爱采纳,获得10
14秒前
yar应助小小付采纳,获得10
14秒前
烟花应助小小付采纳,获得30
14秒前
典雅涵瑶完成签到,获得积分10
16秒前
16秒前
麦地娜发布了新的文献求助10
17秒前
Maggie完成签到,获得积分10
17秒前
WilliamJarvis完成签到 ,获得积分10
17秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4062746
求助须知:如何正确求助?哪些是违规求助? 3601320
关于积分的说明 11437647
捐赠科研通 3324602
什么是DOI,文献DOI怎么找? 1827742
邀请新用户注册赠送积分活动 898299
科研通“疑难数据库(出版商)”最低求助积分说明 818965