清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identification of immune-related endoplasmic reticulum stress genes in sepsis using bioinformatics and machine learning

败血症 内质网 免疫系统 基因 生物 未折叠蛋白反应 转录组 免疫学 计算生物学 基因表达 生物信息学 遗传学
作者
Ting Gong,Yongbin Liu,Zhiyuan Tian,Min Zhang,Hejun Gao,Zhiyong Peng,Shuang Yin,Chi Wai Cheung,Youtan Liu
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:13 被引量:27
标识
DOI:10.3389/fimmu.2022.995974
摘要

Sepsis-induced apoptosis of immune cells leads to widespread depletion of key immune effector cells. Endoplasmic reticulum (ER) stress has been implicated in the apoptotic pathway, although little is known regarding its role in sepsis-related immune cell apoptosis. The aim of this study was to develop an ER stress-related prognostic and diagnostic signature for sepsis through bioinformatics and machine learning algorithms on the basis of the differentially expressed genes (DEGs) between healthy controls and sepsis patients.The transcriptomic datasets that include gene expression profiles of sepsis patients and healthy controls were downloaded from the GEO database. The immune-related endoplasmic reticulum stress hub genes associated with sepsis patients were identified using the new comprehensive machine learning algorithm and bioinformatics analysis which includes functional enrichment analyses, consensus clustering, weighted gene coexpression network analysis (WGCNA), and protein-protein interaction (PPI) network construction. Next, the diagnostic model was established by logistic regression and the molecular subtypes of sepsis were obtained based on the significant DEGs. Finally, the potential diagnostic markers of sepsis were screened among the significant DEGs, and validated in multiple datasets.Significant differences in the type and abundance of infiltrating immune cell populations were observed between the healthy control and sepsis patients. The immune-related ER stress genes achieved strong stability and high accuracy in predicting sepsis patients. 10 genes were screened as potential diagnostic markers for sepsis among the significant DEGs, and were further validated in multiple datasets. In addition, higher expression levels of SCAMP5 mRNA and protein were observed in PBMCs isolated from sepsis patients than healthy donors (n = 5).We established a stable and accurate signature to evaluate the diagnosis of sepsis based on the machine learning algorithms and bioinformatics. SCAMP5 was preliminarily identified as a diagnostic marker of sepsis that may affect its progression by regulating ER stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MTF完成签到 ,获得积分10
19秒前
28秒前
34秒前
Eileen完成签到 ,获得积分0
34秒前
合不着完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
天玄发布了新的文献求助10
3分钟前
3分钟前
4分钟前
天玄发布了新的文献求助10
4分钟前
4分钟前
糟糕的翅膀完成签到,获得积分10
4分钟前
cy0824完成签到 ,获得积分10
4分钟前
4分钟前
披着羊皮的狼完成签到 ,获得积分10
4分钟前
4分钟前
天玄发布了新的文献求助10
4分钟前
5分钟前
无悔完成签到 ,获得积分10
5分钟前
迷茫的一代完成签到,获得积分10
5分钟前
5分钟前
天玄发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
wzbc完成签到,获得积分10
6分钟前
6分钟前
6分钟前
南寅完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482509
求助须知:如何正确求助?哪些是违规求助? 4583305
关于积分的说明 14389165
捐赠科研通 4512439
什么是DOI,文献DOI怎么找? 2472945
邀请新用户注册赠送积分活动 1459144
关于科研通互助平台的介绍 1432624