Identification of immune-related endoplasmic reticulum stress genes in sepsis using bioinformatics and machine learning

败血症 内质网 免疫系统 基因 生物 未折叠蛋白反应 转录组 免疫学 计算生物学 基因表达 生物信息学 遗传学
作者
Ting Gong,Yongbin Liu,Zhiyuan Tian,Min Zhang,Hejun Gao,Zhiyong Peng,Shuang Yin,Chi Wai Cheung,Youtan Liu
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:13 被引量:19
标识
DOI:10.3389/fimmu.2022.995974
摘要

Sepsis-induced apoptosis of immune cells leads to widespread depletion of key immune effector cells. Endoplasmic reticulum (ER) stress has been implicated in the apoptotic pathway, although little is known regarding its role in sepsis-related immune cell apoptosis. The aim of this study was to develop an ER stress-related prognostic and diagnostic signature for sepsis through bioinformatics and machine learning algorithms on the basis of the differentially expressed genes (DEGs) between healthy controls and sepsis patients.The transcriptomic datasets that include gene expression profiles of sepsis patients and healthy controls were downloaded from the GEO database. The immune-related endoplasmic reticulum stress hub genes associated with sepsis patients were identified using the new comprehensive machine learning algorithm and bioinformatics analysis which includes functional enrichment analyses, consensus clustering, weighted gene coexpression network analysis (WGCNA), and protein-protein interaction (PPI) network construction. Next, the diagnostic model was established by logistic regression and the molecular subtypes of sepsis were obtained based on the significant DEGs. Finally, the potential diagnostic markers of sepsis were screened among the significant DEGs, and validated in multiple datasets.Significant differences in the type and abundance of infiltrating immune cell populations were observed between the healthy control and sepsis patients. The immune-related ER stress genes achieved strong stability and high accuracy in predicting sepsis patients. 10 genes were screened as potential diagnostic markers for sepsis among the significant DEGs, and were further validated in multiple datasets. In addition, higher expression levels of SCAMP5 mRNA and protein were observed in PBMCs isolated from sepsis patients than healthy donors (n = 5).We established a stable and accurate signature to evaluate the diagnosis of sepsis based on the machine learning algorithms and bioinformatics. SCAMP5 was preliminarily identified as a diagnostic marker of sepsis that may affect its progression by regulating ER stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朻安完成签到,获得积分10
2秒前
微笑芒果完成签到 ,获得积分10
3秒前
01259完成签到 ,获得积分10
3秒前
xcwy完成签到,获得积分10
5秒前
曙光森林完成签到,获得积分10
5秒前
julia完成签到,获得积分10
5秒前
lulumomo完成签到 ,获得积分10
6秒前
lyy完成签到 ,获得积分10
6秒前
你怎么那么美完成签到,获得积分10
7秒前
威武鞅完成签到,获得积分10
8秒前
8秒前
司徒诗蕾完成签到 ,获得积分10
8秒前
s橙子味日出_完成签到 ,获得积分10
10秒前
研ZZ完成签到,获得积分10
10秒前
13秒前
柚又完成签到 ,获得积分10
15秒前
默存完成签到,获得积分10
15秒前
指哪打哪完成签到,获得积分10
16秒前
灵犀完成签到,获得积分10
17秒前
子焱完成签到 ,获得积分10
20秒前
丘比特应助青青河边草采纳,获得10
21秒前
鸡蛋灌饼与掉渣饼完成签到,获得积分10
22秒前
aimanqiankun55完成签到 ,获得积分10
23秒前
乐乐完成签到,获得积分10
24秒前
谨慎秋珊完成签到 ,获得积分10
25秒前
dara997完成签到,获得积分10
26秒前
yy完成签到 ,获得积分10
27秒前
鲲鹏完成签到 ,获得积分10
28秒前
闻屿完成签到,获得积分10
29秒前
勇往直前完成签到,获得积分10
30秒前
32秒前
34秒前
SciGPT应助Justtry采纳,获得10
37秒前
子羽完成签到,获得积分10
39秒前
小郭完成签到 ,获得积分10
39秒前
SRN发布了新的文献求助10
40秒前
缓慢的甜瓜完成签到,获得积分10
40秒前
张成完成签到 ,获得积分10
40秒前
巴山郎完成签到,获得积分10
42秒前
SJD完成签到,获得积分0
44秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795626
求助须知:如何正确求助?哪些是违规求助? 3340699
关于积分的说明 10301167
捐赠科研通 3057247
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805478
科研通“疑难数据库(出版商)”最低求助积分说明 762626