Development of Extendable Open-Source Structural Inspection Datasets

桥(图论) 计算机科学 目视检查 注释 方向(向量空间) 人工智能 深度学习 数据挖掘 几何学 数学 医学 内科学
作者
Eric Bianchi,Matthew H. Hebdon
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:36 (6) 被引量:22
标识
DOI:10.1061/(asce)cp.1943-5487.0001045
摘要

Recent infrastructure inspection has used deep-learning models to enhance and augment typical inspection tasks such as detecting and quantifying damage. One of the issues with this trend is that deep-learning models typically require a significant amount of data. In a data domain such as structural inspection, publicly accessible data are difficult to find, making the advancement of this research slower. Therefore, we set out to acquire bridge inspection data by selectively extracting candidate images from hundreds of thousands of bridge inspection reports from the Virginia Department of Transportation. Using this rich source of diverse data, we refined our collected data to develop four high-quality, easily extendable, publicly accessible datasets, tested with state-of-the-art models to support typical bridge inspection tasks. The four datasets: labeled cracks in the wild, 3,817 image sets of semantically segmented concrete cracks taken from diverse scenery; 3,817 image sets of semantically segmented structural inspection materials (concrete, steel, metal decking); 440 images of finely annotated steel corrosion condition state (good, fair, poor, severe); and 1,470 images of fatigue-prone structural steel bridge details (bearings, gusset plates, cover plate terminations, and out-of-plane stiffeners) for object detection. To ensure the extendibility of the datasets, the authors have proposed annotation guidelines to maintain consistent growth through annotation collaboration. Researchers can use these trained models and data for auxiliary inspection tasks such as damage detection, damage forecasting, automatic report generation, and, coupled with the assistance of unmanned aerial systems, for autonomous flight path planning and object avoidance. The procedures, concepts, and repositories provided in this paper will help to set a course for the advancement of better detection models using high-quality accessible and extendable datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
王宇婷发布了新的文献求助10
2秒前
2秒前
林林总总发布了新的文献求助10
3秒前
义气秋灵完成签到 ,获得积分10
3秒前
阿忠发布了新的文献求助10
4秒前
5秒前
xmx完成签到 ,获得积分10
6秒前
8秒前
fei完成签到,获得积分10
9秒前
10秒前
酷波er应助徐梦曦采纳,获得10
10秒前
Jasper应助林林总总采纳,获得10
11秒前
懵懂的采梦应助淡淡梦容采纳,获得200
11秒前
13秒前
美好雨竹发布了新的文献求助30
14秒前
小小学神发布了新的文献求助10
15秒前
丁一完成签到,获得积分10
15秒前
丘比特应助lxr8900采纳,获得10
15秒前
aldehyde应助lxr8900采纳,获得10
15秒前
情怀应助lxr8900采纳,获得10
15秒前
魔幻的无招完成签到,获得积分10
16秒前
17秒前
周炎发布了新的文献求助10
19秒前
小西完成签到 ,获得积分10
19秒前
19秒前
MAVS完成签到,获得积分10
19秒前
24秒前
一滴水发布了新的文献求助10
26秒前
开朗满天完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助30
30秒前
31秒前
wanci应助小小学神采纳,获得10
32秒前
蜡笔小新完成签到,获得积分10
35秒前
一滴水完成签到,获得积分10
36秒前
陆陆大人完成签到,获得积分10
37秒前
平淡仇天发布了新的文献求助10
38秒前
热爱学习完成签到,获得积分10
38秒前
Hello应助kuaidianbiye采纳,获得40
39秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Semiconductor devices : pioneering papers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862192
求助须知:如何正确求助?哪些是违规求助? 3404728
关于积分的说明 10640957
捐赠科研通 3127919
什么是DOI,文献DOI怎么找? 1724965
邀请新用户注册赠送积分活动 830759
科研通“疑难数据库(出版商)”最低求助积分说明 779421