孤子
可积系统
分数阶微积分
非线性系统
逆散射变换
逆散射问题
数学物理
色散(光学)
物理
非线性薛定谔方程
订单(交换)
反向
数学
数学分析
散射
量子力学
经济
财务
几何学
作者
Weifang Weng,Minghe Zhang,Zhenya Yan
出处
期刊:Cornell University - arXiv
日期:2022-08-09
被引量:1
标识
DOI:10.48550/arxiv.2208.04493
摘要
In this paper, we explore the anomalous dispersive relations, inverse scattering transform and fractional N-soliton solutions of the integrable fractional higher-order nonlinear Schrodinger (fHONLS) equations, containing the fractional Hirota (fHirota), fractional complex mKdV (fcmKdV), and fractional Lakshmanan-Porsezian-Daniel (fLPD) equations, etc. The inverse scattering problem can be solved exactly by means of the matrix Riemann-Hilbert problem with simple poles. As a consequence, an explicit formula is found for the fractional N-soliton solutions of the fHONLS equations in the reflectionless case. In particular, we analyze the fractional one-, two- and three-soliton solutions with anomalous dispersions of fHirota and fcmKdV equations. The wave, group, and phase velocities of these envelope fractional 1-soliton solutions are related to the power laws of their amplitudes. These obtained fractional N-soliton solutions may be useful to explain the related super-dispersion transports of nonlinear waves in fractional nonlinear media.
科研通智能强力驱动
Strongly Powered by AbleSci AI