A Re-evaluation of Deep Learning Methods for Attributed Graph Clustering

计算机科学 聚类分析 图形 聚类系数 数据挖掘 图划分 水准点(测量) 人工智能 机器学习 理论计算机科学 大地测量学 地理
作者
Xinying Lai,Dingming Wu,Christian S. Jensen,Kezhong Lu
标识
DOI:10.1145/3583780.3614768
摘要

Attributed graph clustering aims to partition the nodes in a graph into groups such that the nodes in the same group are close in terms of graph proximity and also have similar attribute values. Recently, deep learning methods have achieved state-of-the-art clustering performance. However, the effectiveness of existing methods remains unclear due to two reasons. First, the datasets used for evaluation do not support fully the goal of attributed graph clustering. The category labels of nodes are only relevant to node attributes, and nodes with the same category label are often distant in the graph. Second, existing methods for the attributed graph clustering are complex and consist of several components. There is lack of comparisons of methods composed of different components from existing methods. This study proposes six benchmark datasets that support better the goal of attributed graph clustering and reports the performance of existing representative methods. Given that existing methods leave room for improvement on the proposed benchmark datasets, we systematically analyze five aspects of existing methods: encoded information, training networks, fusion mechanisms, loss functions, and clustering result generation. Based on these aspects, we decompose existing methods into modules and evaluate the performance of reconfigured methods based on these modules. According to the experimental results on the proposed benchmark datasets, we identify two promising configurations: (i) taking the attribute matrix as input to a graph convolutional network and (ii) layer-wise linear fusing deep neural network and graph attention network. And we also find that complex loss function fails to improve the clustering performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪慧航空发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
烟柳画桥完成签到,获得积分10
3秒前
Ov5发布了新的文献求助10
3秒前
3秒前
Tom的梦想发布了新的文献求助10
4秒前
heyvan完成签到 ,获得积分10
5秒前
解洙发布了新的文献求助10
5秒前
萱萱发布了新的文献求助10
7秒前
8秒前
麦兜发布了新的文献求助10
8秒前
狸狸完成签到,获得积分10
9秒前
Ov5完成签到,获得积分10
11秒前
qiao应助HOPE采纳,获得10
14秒前
LK完成签到,获得积分10
14秒前
长常九久完成签到 ,获得积分10
18秒前
22秒前
LK发布了新的文献求助10
23秒前
风华正茂完成签到,获得积分20
25秒前
道阻且长发布了新的文献求助10
27秒前
Lan完成签到 ,获得积分10
27秒前
加油加油发布了新的文献求助10
29秒前
勤恳天寿完成签到,获得积分10
29秒前
充电宝应助道阻且长采纳,获得10
29秒前
合适的荆完成签到,获得积分10
30秒前
东风发布了新的文献求助10
31秒前
36秒前
聪慧航空完成签到,获得积分10
38秒前
Boming发布了新的文献求助20
39秒前
39秒前
Q0完成签到,获得积分10
40秒前
xxfeng发布了新的文献求助10
42秒前
42秒前
lli完成签到,获得积分10
44秒前
黄钊杰发布了新的文献求助10
44秒前
彭于晏应助张大泽同学采纳,获得10
45秒前
道阻且长发布了新的文献求助10
48秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781383
求助须知:如何正确求助?哪些是违规求助? 3326891
关于积分的说明 10228650
捐赠科研通 3041878
什么是DOI,文献DOI怎么找? 1669613
邀请新用户注册赠送积分活动 799161
科研通“疑难数据库(出版商)”最低求助积分说明 758751