EnML: Multi-label Ensemble Learning for Urdu Text Classification

计算机科学 人工智能 乌尔都语 自然语言处理 机器学习 水准点(测量) 深度学习 集成学习 大地测量学 语言学 哲学 地理
作者
Faiza Mehmood,Rehab Shahzadi,Hina Ghafoor,Muhammad Nabeel Asim,Muhammad Usman Ghani Khan,Waqar Mahmood,Andreas Dengel
出处
期刊:ACM Transactions on Asian and Low-Resource Language Information Processing 卷期号:22 (9): 1-31 被引量:4
标识
DOI:10.1145/3616111
摘要

Exponential growth of electronic data requires advanced multi-label classification approaches for the development of natural language processing (NLP) applications such as recommendation systems, drug reaction detection, hate speech detection, and opinion recognition/mining. To date, several machine and deep learning–based multi-label classification methodologies have been proposed for English, French, German, Chinese, Arabic, and other developed languages. Urdu is the 11th largest language in the world and has no computer-aided multi-label textual news classification approach. Unlike other languages, Urdu is lacking multi-label text classification datasets that can be used to benchmark the performance of existing machine and deep learning methodologies. With an aim to accelerate and expedite research for the development of Urdu multi-label text classification–based applications, this article provides multiple contributions as follows: First, it provides a manually annotated multi-label textual news classification dataset for the Urdu language. Second, it benchmarks the performance of traditional machine learning approaches particularly by adapting three data transformation approaches along with three top-performing machine learning classifiers and four algorithm adaptation-based approaches. Third, it benchmarks performance of 16 existing deep learning approaches and the four most widely used language models. Finally, it provides an ensemble approach that reaps the benefits of three different deep learning architectures to precisely predict different classes associated with a particular Urdu textual document. Experimental results reveal that proposed ensemble approach performance values (87% accuracy, 92% F1-score, and 8% hamming loss) are significantly higher than adapted machine and deep learning–based approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12完成签到,获得积分10
刚刚
美好小玉发布了新的文献求助10
1秒前
2秒前
眯眯眼的采白应助小魏采纳,获得10
2秒前
win完成签到,获得积分20
2秒前
3秒前
Nolan完成签到,获得积分10
4秒前
4秒前
5秒前
西柚完成签到,获得积分10
6秒前
西门发发发布了新的文献求助10
6秒前
kyt完成签到,获得积分10
7秒前
8秒前
FashionBoy应助美好小玉采纳,获得10
8秒前
铭铭铭完成签到,获得积分10
8秒前
小星历险记完成签到 ,获得积分10
9秒前
9秒前
妄自发布了新的文献求助10
10秒前
manman完成签到,获得积分10
12秒前
15秒前
包容新蕾完成签到 ,获得积分10
17秒前
上官若男应助luo采纳,获得10
18秒前
小马甲应助轮子采纳,获得30
18秒前
19秒前
圈圈完成签到,获得积分10
19秒前
20秒前
xixi完成签到,获得积分10
21秒前
22秒前
24秒前
24秒前
25秒前
Yang应助圈圈采纳,获得10
30秒前
30秒前
xLi完成签到,获得积分10
31秒前
科研通AI2S应助Qs2024PG采纳,获得10
31秒前
31秒前
科研通AI2S应助Qs2024PG采纳,获得10
31秒前
科研通AI2S应助Qs2024PG采纳,获得10
31秒前
sfsfes应助Qs2024PG采纳,获得10
31秒前
sfsfes应助Qs2024PG采纳,获得10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4032289
求助须知:如何正确求助?哪些是违规求助? 3570891
关于积分的说明 11362721
捐赠科研通 3301320
什么是DOI,文献DOI怎么找? 1817357
邀请新用户注册赠送积分活动 891529
科研通“疑难数据库(出版商)”最低求助积分说明 814266