EnML: Multi-label Ensemble Learning for Urdu Text Classification

计算机科学 人工智能 乌尔都语 自然语言处理 机器学习 水准点(测量) 深度学习 集成学习 大地测量学 语言学 哲学 地理
作者
Faiza Mehmood,Rehab Shahzadi,Hina Ghafoor,Muhammad Nabeel Asim,Muhammad Usman Ghani Khan,Waqar Mahmood,Andreas Dengel
出处
期刊:ACM Transactions on Asian and Low-Resource Language Information Processing 卷期号:22 (9): 1-31 被引量:4
标识
DOI:10.1145/3616111
摘要

Exponential growth of electronic data requires advanced multi-label classification approaches for the development of natural language processing (NLP) applications such as recommendation systems, drug reaction detection, hate speech detection, and opinion recognition/mining. To date, several machine and deep learning–based multi-label classification methodologies have been proposed for English, French, German, Chinese, Arabic, and other developed languages. Urdu is the 11th largest language in the world and has no computer-aided multi-label textual news classification approach. Unlike other languages, Urdu is lacking multi-label text classification datasets that can be used to benchmark the performance of existing machine and deep learning methodologies. With an aim to accelerate and expedite research for the development of Urdu multi-label text classification–based applications, this article provides multiple contributions as follows: First, it provides a manually annotated multi-label textual news classification dataset for the Urdu language. Second, it benchmarks the performance of traditional machine learning approaches particularly by adapting three data transformation approaches along with three top-performing machine learning classifiers and four algorithm adaptation-based approaches. Third, it benchmarks performance of 16 existing deep learning approaches and the four most widely used language models. Finally, it provides an ensemble approach that reaps the benefits of three different deep learning architectures to precisely predict different classes associated with a particular Urdu textual document. Experimental results reveal that proposed ensemble approach performance values (87% accuracy, 92% F1-score, and 8% hamming loss) are significantly higher than adapted machine and deep learning–based approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助张东泽采纳,获得10
1秒前
扒开皮皮发布了新的文献求助10
1秒前
1秒前
乐观若之完成签到,获得积分10
2秒前
QING完成签到 ,获得积分10
4秒前
橙子完成签到,获得积分10
4秒前
JOKY完成签到 ,获得积分10
4秒前
Accepted完成签到,获得积分10
6秒前
gyhmm发布了新的文献求助10
8秒前
爱吃绿豆沙的热辣小妈完成签到 ,获得积分10
8秒前
淡然思山完成签到,获得积分20
9秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
liufan完成签到 ,获得积分10
11秒前
田様应助朱冰蓝采纳,获得10
11秒前
圣诞节完成签到,获得积分10
12秒前
FelixChen应助accept白采纳,获得10
12秒前
淡然思山发布了新的文献求助30
13秒前
万能图书馆应助问天采纳,获得10
15秒前
懒汉完成签到,获得积分10
16秒前
semigreen完成签到 ,获得积分10
18秒前
追寻清完成签到,获得积分10
18秒前
浅池星完成签到 ,获得积分10
18秒前
19秒前
eternal完成签到,获得积分10
19秒前
黄博关注了科研通微信公众号
21秒前
MNF完成签到,获得积分10
21秒前
HEIKU应助N2H4采纳,获得10
22秒前
1阿发布了新的文献求助10
22秒前
英俊的铭应助从容的安南采纳,获得10
22秒前
22秒前
聪慧雪糕发布了新的文献求助10
23秒前
科研通AI5应助雪见采纳,获得10
23秒前
24秒前
qgd完成签到 ,获得积分10
25秒前
Jasper应助skjt采纳,获得10
25秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834960
求助须知:如何正确求助?哪些是违规求助? 3377456
关于积分的说明 10498597
捐赠科研通 3096925
什么是DOI,文献DOI怎么找? 1705320
邀请新用户注册赠送积分活动 820529
科研通“疑难数据库(出版商)”最低求助积分说明 772110