ViTPose++: Vision Transformer for Generic Body Pose Estimation

计算机科学 姿势 可扩展性 变压器 推论 人工智能 编码器 模式识别(心理学) 机器学习 电压 数据库 操作系统 量子力学 物理
作者
Yufei Xu,Jing Zhang,Qiming Zhang,Dacheng Tao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (2): 1212-1230 被引量:72
标识
DOI:10.1109/tpami.2023.3330016
摘要

In this paper, we show the surprisingly good properties of plain vision transformers for body pose estimation from various aspects, namely simplicity in model structure, scalability in model size, flexibility in training paradigm, and transferability of knowledge between models, through a simple baseline model dubbed ViTPose. ViTPose employs the plain and non-hierarchical vision transformer as an encoder to encode features and a lightweight decoder to decode body keypoints in either a top-down or a bottom-up manner. It can be scaled to 1B parameters by taking the advantage of the scalable model capacity and high parallelism, setting a new Pareto front for throughput and performance. Besides, ViTPose is very flexible regarding the attention type, input resolution, and pre-training and fine-tuning strategy. Based on the flexibility, a novel ViTPose++ model is proposed to deal with heterogeneous body keypoint categories via knowledge factorization, i.e., adopting task-agnostic and task-specific feed-forward networks in the transformer. We also demonstrate that the knowledge of large ViTPose models can be easily transferred to small ones via a simple knowledge token. Our largest single model ViTPose-G sets a new record on the MS COCO test set without model ensemble. Furthermore, our ViTPose++ model achieves state-of-the-art performance simultaneously on a series of body pose estimation tasks, including MS COCO, AI Challenger, OCHuman, MPII for human keypoint detection, COCO-Wholebody for whole-body keypoint detection, as well as AP-10K and APT-36K for animal keypoint detection, without sacrificing inference speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助lic采纳,获得10
1秒前
1秒前
bo.Y完成签到,获得积分10
2秒前
3秒前
曾志伟发布了新的文献求助30
4秒前
5秒前
7秒前
9秒前
情怀应助玻璃杯采纳,获得10
10秒前
Asurary发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
mkmimii发布了新的文献求助10
12秒前
酷波er应助sahjdkah采纳,获得10
14秒前
猴哥发布了新的文献求助10
16秒前
17秒前
20秒前
腾飞发布了新的文献求助50
20秒前
21秒前
风清扬应助HOU采纳,获得30
21秒前
897Kk6关注了科研通微信公众号
21秒前
lyy完成签到,获得积分10
22秒前
unyield完成签到,获得积分10
23秒前
23秒前
腼腆的薯片完成签到 ,获得积分10
23秒前
24秒前
24秒前
mkmimii完成签到,获得积分10
25秒前
28秒前
Lee完成签到,获得积分10
29秒前
慕青应助cy采纳,获得10
29秒前
musicyy222发布了新的文献求助10
29秒前
Jasper应助pishuang采纳,获得10
31秒前
Elody完成签到,获得积分10
31秒前
张凡发布了新的文献求助10
34秒前
小蘑菇应助科研通管家采纳,获得10
36秒前
深情安青应助科研通管家采纳,获得10
36秒前
所所应助科研通管家采纳,获得10
36秒前
在水一方应助科研通管家采纳,获得10
36秒前
aldehyde应助科研通管家采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528321
求助须知:如何正确求助?哪些是违规求助? 4617831
关于积分的说明 14560868
捐赠科研通 4556701
什么是DOI,文献DOI怎么找? 2497059
邀请新用户注册赠送积分活动 1477315
关于科研通互助平台的介绍 1448619