Machine learning framework for intelligent aeration control in wastewater treatment plants: Automatic feature engineering based on variation sliding layer

曝气 人工智能 机器学习 废水 计算机科学 污水处理 前馈 特征(语言学) 智能控制 工程类 控制工程 环境工程 废物管理 语言学 哲学
作者
Yuqi Wang,Hongcheng Wang,Yunpeng Song,Shiqing Zhou,Qiu-Ning Li,Bin Liang,Wenzong Liu,Yiwei Zhao,Aijie Wang
出处
期刊:Water Research [Elsevier BV]
卷期号:246: 120676-120676 被引量:36
标识
DOI:10.1016/j.watres.2023.120676
摘要

Intelligent control of wastewater treatment plants (WWTPs) has the potential to reduce energy consumption and greenhouse gas emissions significantly. Machine learning (ML) provides a promising solution to handle the increasing amount and complexity of generated data. However, relationships between the features of wastewater datasets are generally inconspicuous, which hinders the application of artificial intelligence (AI) in WWTPs intelligent control. In this study, we develop an automatic framework of feature engineering based on variation sliding layer (VSL) to control the air demand precisely. Results demonstrated that using VSL in classic machine learning, deep learning, and ensemble learning could significantly improve the efficiency of aeration intelligent control in WWTPs. Bayesian regression and ensemble learning achieved the highest accuracy for predicting air demand. The developed models with VSL-ML models were also successfully implemented under the full-scale wastewater treatment plant, showing a 16.12 % reduction in demand compared to conventional aeration control of preset dissolved oxygen (DO) and feedback to the blower. The VSL-ML models showed great potential to be applied for the precision air demand prediction and control. The package as a tripartite library of Python is called wwtpai, which is freely accessible on GitHub and CSDN to remove technical barriers to the application of AI technology in WWTPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助热情老三采纳,获得10
1秒前
a61完成签到,获得积分10
1秒前
islazheng发布了新的文献求助10
1秒前
1秒前
月亮发布了新的文献求助10
3秒前
852应助AATRAHASIS采纳,获得10
3秒前
脑洞疼应助坦率紫烟采纳,获得10
6秒前
cyk完成签到,获得积分10
6秒前
6秒前
NagatoYuki完成签到,获得积分10
6秒前
高点点发布了新的文献求助10
8秒前
Oracle应助嘎嘎嘎采纳,获得30
9秒前
10秒前
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
WaitP应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
15秒前
16秒前
高点点完成签到,获得积分10
16秒前
16秒前
坦率紫烟发布了新的文献求助10
19秒前
HHYYAA发布了新的文献求助10
20秒前
充电宝应助听雨采纳,获得10
20秒前
xiaoxiang_1001完成签到,获得积分10
20秒前
共享精神应助HHYYAA采纳,获得10
23秒前
26秒前
科研通AI5应助文章多多采纳,获得10
27秒前
听雨发布了新的文献求助10
31秒前
33秒前
小苏完成签到 ,获得积分10
35秒前
尘染完成签到 ,获得积分10
36秒前
36秒前
小蘑菇应助隐形鸣凤采纳,获得10
37秒前
37秒前
居蓝完成签到 ,获得积分10
37秒前
脑洞疼应助眼睛大的风华采纳,获得10
38秒前
38秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803708
求助须知:如何正确求助?哪些是违规求助? 3348555
关于积分的说明 10339310
捐赠科研通 3064745
什么是DOI,文献DOI怎么找? 1682727
邀请新用户注册赠送积分活动 808390
科研通“疑难数据库(出版商)”最低求助积分说明 764082