亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Approaches to Investigate the Structure–Activity Relationship of Angiotensin-Converting Enzyme Inhibitors

化学 脚手架 随机森林 计算机科学 数量结构-活动关系 稳健性(进化) 机器学习 血管紧张素转换酶 人工智能 数据挖掘 生物信息学 化学 医学 数据库 生物 药物发现 生物化学 放射科 基因 血压
作者
Tianshi Yu,Chanin Nantasenamat,Nuttapat Anuwongcharoen,Theeraphon Piacham
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (46): 43500-43510 被引量:10
标识
DOI:10.1021/acsomega.3c03225
摘要

Angiotensin-converting enzyme inhibitors (ACEIs) play a crucial role in treating conditions such as hypertension, heart failure, and kidney diseases. Nevertheless, the ACEIs currently available on the market are linked to a variety of adverse effects including renal insufficiency, which restricts their usage. There is thus an urgent need to optimize the currently available ACEIs. This study represents a structure-activity relationship investigation of ACEIs, employing machine learning to analyze data sets sourced from the ChEMBL database. Exploratory data analysis was performed to visualize the physicochemical properties of compounds by investigating the distributions, patterns, and statistical significance among the different bioactivity groups. Further scaffold analysis has identified 9 representative Murcko scaffolds with frequencies ≥10. Scaffold diversity has revealed that active ACEIs had more scaffold diversity than their intermediate and inactive counterparts, thereby indicating the significance of performing lead optimization on scaffolds of active ACEIs. Scaffolds 1, 3, 6, and 8 are unfavorable in comparison with scaffolds 2, 3, 5, 7, and 9. QSAR investigation of compiled data sets consisting of 549 compounds led to the selection of Mordred descriptor and Random Forest algorithm as the best model, which afforded robust model performance (accuracy: 0.981, 0.77, and 0.745; MCC: 0.972, 0.658, and 0.617 for the training set, 10-fold cross-validation set, and testing set, respectively). To enhance the model's robustness and predictability, we reduced the chemical diversity of the input compounds by using the 9 most prevalent Murcko scaffold-matched compounds (comprising a total of 168) followed by a subsequent QSAR model investigation using Mordred descriptor and extremely gradient boost algorithm (accuracy: 0.973, 0.849, and 0.823; MCC: 0.959, 0.786, and 0.742 for the training set, 10-fold cross-validation set, and testing set, respectively). Further illustration of the structure-activity relationship using SALI plots has enabled the identification of clusters of compounds that create activity cliffs. These findings, as presented in this study, contribute to the advancement of drug discovery and the optimization of ACEIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Lucas应助yangderder采纳,获得10
4秒前
12秒前
14秒前
yangderder完成签到,获得积分10
14秒前
19秒前
Juniorrr发布了新的文献求助30
23秒前
24秒前
希望天下0贩的0应助XUANNI采纳,获得10
26秒前
布丁完成签到,获得积分10
35秒前
42秒前
45秒前
小石榴爸爸完成签到 ,获得积分10
48秒前
Gromit完成签到,获得积分10
53秒前
斯文败类应助科研通管家采纳,获得10
56秒前
ceeray23应助科研通管家采纳,获得10
56秒前
传奇3应助科研通管家采纳,获得10
56秒前
ceeray23应助科研通管家采纳,获得10
56秒前
haozi王发布了新的文献求助10
56秒前
Swear完成签到 ,获得积分10
57秒前
风停了完成签到,获得积分10
58秒前
乐乐应助Gromit采纳,获得10
59秒前
haozi王完成签到,获得积分20
1分钟前
Jasper应助Juniorrr采纳,获得10
1分钟前
1分钟前
如梦发布了新的文献求助10
1分钟前
1分钟前
如梦完成签到,获得积分10
1分钟前
lu完成签到,获得积分10
1分钟前
刘欣欣发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
胖头鱼please完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5198513
求助须知:如何正确求助?哪些是违规求助? 4379453
关于积分的说明 13638137
捐赠科研通 4235577
什么是DOI,文献DOI怎么找? 2323428
邀请新用户注册赠送积分活动 1321551
关于科研通互助平台的介绍 1272535