清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning Approaches to Investigate the Structure–Activity Relationship of Angiotensin-Converting Enzyme Inhibitors

化学 脚手架 随机森林 计算机科学 数量结构-活动关系 稳健性(进化) 机器学习 血管紧张素转换酶 人工智能 数据挖掘 生物信息学 化学 医学 数据库 生物 药物发现 生物化学 放射科 基因 血压
作者
Tianshi Yu,Chanin Nantasenamat,Nuttapat Anuwongcharoen,Theeraphon Piacham
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (46): 43500-43510 被引量:10
标识
DOI:10.1021/acsomega.3c03225
摘要

Angiotensin-converting enzyme inhibitors (ACEIs) play a crucial role in treating conditions such as hypertension, heart failure, and kidney diseases. Nevertheless, the ACEIs currently available on the market are linked to a variety of adverse effects including renal insufficiency, which restricts their usage. There is thus an urgent need to optimize the currently available ACEIs. This study represents a structure-activity relationship investigation of ACEIs, employing machine learning to analyze data sets sourced from the ChEMBL database. Exploratory data analysis was performed to visualize the physicochemical properties of compounds by investigating the distributions, patterns, and statistical significance among the different bioactivity groups. Further scaffold analysis has identified 9 representative Murcko scaffolds with frequencies ≥10. Scaffold diversity has revealed that active ACEIs had more scaffold diversity than their intermediate and inactive counterparts, thereby indicating the significance of performing lead optimization on scaffolds of active ACEIs. Scaffolds 1, 3, 6, and 8 are unfavorable in comparison with scaffolds 2, 3, 5, 7, and 9. QSAR investigation of compiled data sets consisting of 549 compounds led to the selection of Mordred descriptor and Random Forest algorithm as the best model, which afforded robust model performance (accuracy: 0.981, 0.77, and 0.745; MCC: 0.972, 0.658, and 0.617 for the training set, 10-fold cross-validation set, and testing set, respectively). To enhance the model's robustness and predictability, we reduced the chemical diversity of the input compounds by using the 9 most prevalent Murcko scaffold-matched compounds (comprising a total of 168) followed by a subsequent QSAR model investigation using Mordred descriptor and extremely gradient boost algorithm (accuracy: 0.973, 0.849, and 0.823; MCC: 0.959, 0.786, and 0.742 for the training set, 10-fold cross-validation set, and testing set, respectively). Further illustration of the structure-activity relationship using SALI plots has enabled the identification of clusters of compounds that create activity cliffs. These findings, as presented in this study, contribute to the advancement of drug discovery and the optimization of ACEIs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23333完成签到,获得积分10
刚刚
海英完成签到,获得积分10
3秒前
充电宝应助清爽太阳采纳,获得10
4秒前
会撒娇的如天完成签到 ,获得积分10
4秒前
从心随缘完成签到 ,获得积分10
7秒前
优雅夕阳完成签到 ,获得积分10
16秒前
Jasmineyfz完成签到 ,获得积分10
22秒前
23秒前
苗笑卉完成签到,获得积分10
25秒前
王波完成签到 ,获得积分10
27秒前
一苇以航完成签到 ,获得积分10
27秒前
哈哈哈完成签到 ,获得积分10
38秒前
柯彦完成签到 ,获得积分10
40秒前
beihaik完成签到 ,获得积分10
43秒前
霸气秀完成签到 ,获得积分10
44秒前
肖果完成签到 ,获得积分10
54秒前
龙弟弟完成签到 ,获得积分10
56秒前
科目三应助凌志采纳,获得10
1分钟前
FrancisCho发布了新的文献求助10
1分钟前
曾建完成签到 ,获得积分10
1分钟前
black_cavalry完成签到,获得积分10
1分钟前
朴子完成签到 ,获得积分10
1分钟前
1分钟前
airtermis完成签到 ,获得积分10
1分钟前
清爽太阳发布了新的文献求助10
1分钟前
Hello应助Wang采纳,获得10
1分钟前
泡泡茶壶o完成签到 ,获得积分10
1分钟前
cp3xzh完成签到,获得积分10
1分钟前
标致的泥猴桃完成签到,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
谦让寻凝完成签到 ,获得积分10
2分钟前
鲸鱼打滚完成签到 ,获得积分10
2分钟前
2分钟前
xzw完成签到 ,获得积分10
2分钟前
从容的水壶完成签到 ,获得积分10
2分钟前
凌志发布了新的文献求助10
2分钟前
2分钟前
付莹子完成签到 ,获得积分10
2分钟前
秀丽的芷珍完成签到 ,获得积分10
2分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4156226
求助须知:如何正确求助?哪些是违规求助? 3692036
关于积分的说明 11658991
捐赠科研通 3383204
什么是DOI,文献DOI怎么找? 1856340
邀请新用户注册赠送积分活动 917831
科研通“疑难数据库(出版商)”最低求助积分说明 831161