巴勒
微型多孔材料
膜
渗透
三联烯
聚合物
化学工程
氧化裂解
化学
高分子化学
气体分离
材料科学
热的
有机化学
催化作用
生物化学
工程类
物理
气象学
作者
Wei Xie,Peijun Zheng,Yiwen Chen,Hongjun Zhang,Qi Wu,Hongyan Liu,Ying Sun,Haitao Wang,Shuangjiang Luo
标识
DOI:10.1021/acs.iecr.3c02227
摘要
In situ thermal oxidative cross-linking provides an efficient strategy for manipulating microporosity in polymeric gas separation membranes. Herein, we report a rational macromolecular design combining microporous polymers with thermal oxidative cross-linking to fabricate highly permselective membranes for advanced energy-efficient gas separations. We demonstrate that direct thermal treatment in air induces both oxidative chain scission and thermal oxidative cross-linking, leading to a hierarchically microporous architecture enabling simultaneous enhancement of permeability and selectivity. Consequently, the TOC-PI-Trip-TB-450-30min membrane containing both the triptycene and Tröger's base moieties upon thermal treatment at 450 °C for 30 min in air exhibits H2 and CO2 permeabilities of 1138 and 640 Barrer, respectively, and H2/N2, H2/CH4, and CO2/CH4 selectivities of 76, 121, and 68, respectively, exceeding or approaching the state-of-the-art upper bounds. This study also confirmed that the microcavity characteristics and gas permeation performance of the thermal-oxidatively cross-linked membranes are highly tunable by regulating the polymer structure, oxidative temperature, and reaction time.
科研通智能强力驱动
Strongly Powered by AbleSci AI