A review of secure federated learning: Privacy leakage threats, protection technologies, challenges and future directions

计算机科学 计算机安全 信息隐私 主流 数据科学 人工智能 哲学 神学
作者
Lina Ge,Haiao Li,Xiao Wang,Zhe Wang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:561: 126897-126897 被引量:8
标识
DOI:10.1016/j.neucom.2023.126897
摘要

Advances in the new generation of Internet of Things (IoT) technology are propelling the growth of intelligent industrial applications worldwide. Simultaneously, widespread adoption of artificial intelligence (AI) technologies, such as machine and deep learning, is accelerating. Traditional machine learning models rely heavily on massive amounts of data, however collecting and processing massive amounts of data generated by network-edge devices is costly and inefficient, and poses serious risks to data privacy. As a new paradigm for statistical model training in distributed edge networks, federated learning (FL) enables data to participate in federated model training without being localized. This approach can be used to solve traditional machine learning problems of low data utilization, data privacy, and information security caused by data isolation. However, the defects of the FL framework and insecure network environments cause many security and privacy leakage problems in actual application scenarios of FL. First, the concepts, classifications, and fundamental FL principles were described. Second, the mainstream privacy security issues and classification of FL were investigated. Privacy security protection techniques for FL were then identified. Finally, challenges and future research directions for the development of FL privacy security are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
6秒前
6秒前
Owen应助manan采纳,获得10
11秒前
12秒前
Juvenilesy完成签到 ,获得积分10
16秒前
16秒前
丘比特应助musong采纳,获得10
18秒前
动漫大师发布了新的文献求助10
21秒前
科研通AI5应助健忘的金采纳,获得10
23秒前
25秒前
加油加油发布了新的文献求助10
28秒前
30秒前
musong发布了新的文献求助10
30秒前
31秒前
31秒前
31秒前
33秒前
33秒前
33秒前
去晒月亮完成签到,获得积分10
34秒前
朔夜发布了新的文献求助10
34秒前
36秒前
健忘的金发布了新的文献求助10
37秒前
manan发布了新的文献求助10
37秒前
37秒前
小草发布了新的文献求助10
38秒前
景行行止完成签到,获得积分10
38秒前
您好发布了新的文献求助50
38秒前
SUIJI发布了新的文献求助10
39秒前
云中歌完成签到,获得积分10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781398
求助须知:如何正确求助?哪些是违规求助? 3326904
关于积分的说明 10228819
捐赠科研通 3041892
什么是DOI,文献DOI怎么找? 1669623
邀请新用户注册赠送积分活动 799180
科研通“疑难数据库(出版商)”最低求助积分说明 758751