亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

VulExplainer: A Transformer-Based Hierarchical Distillation for Explaining Vulnerability Types

计算机科学 软件 又称作 机器学习 脆弱性(计算) 人工智能 变压器 数据挖掘 计算机安全 程序设计语言 工程类 电气工程 图书馆学 电压
作者
Michael C. Fu,Van Nguyen,Chakkrit Tantithamthavorn,Trung Le,Dinh Phung
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:49 (10): 4550-4565 被引量:16
标识
DOI:10.1109/tse.2023.3305244
摘要

Deep learning-based vulnerability prediction approaches are proposed to help under-resourced security practitioners to detect vulnerable functions. However, security practitioners still do not know what type of vulnerabilities correspond to a given prediction (aka CWE-ID). Thus, a novel approach to explain the type of vulnerabilities for a given prediction is imperative. In this paper, we propose VulExplainer , an approach to explain the type of vulnerabilities. We represent VulExplainer as a vulnerability classification task. However, vulnerabilities have diverse characteristics (i.e., CWE-IDs) and the number of labeled samples in each CWE-ID is highly imbalanced (known as a highly imbalanced multi-class classification problem), which often lead to inaccurate predictions. Thus, we introduce a Transformer-based hierarchical distillation for software vulnerability classification in order to address the highly imbalanced types of software vulnerabilities. Specifically, we split a complex label distribution into sub-distributions based on CWE abstract types (i.e., categorizations that group similar CWE-IDs). Thus, similar CWE-IDs can be grouped and each group will have a more balanced label distribution. We learn TextCNN teachers on each of the simplified distributions respectively, however, they only perform well in their group. Thus, we build a transformer student model to generalize the performance of TextCNN teachers through our hierarchical knowledge distillation framework. Through an extensive evaluation using the real-world 8,636 vulnerabilities, our approach outperforms all of the baselines by 5%–29%. The results also demonstrate that our approach can be applied to Transformer-based architectures such as CodeBERT, GraphCodeBERT, and CodeGPT. Moreover, our method maintains compatibility with any Transformer-based model without requiring any architectural modifications but only adds a special distillation token to the input. These results highlight our significant contributions towards the fundamental and practical problem of explaining software vulnerability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whardon发布了新的文献求助10
刚刚
dkw完成签到 ,获得积分10
15秒前
link完成签到,获得积分20
17秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
18秒前
wanci应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
爆米花应助虚拟的铃铛采纳,获得10
19秒前
19秒前
24秒前
CodeCraft应助whardon采纳,获得10
29秒前
41秒前
whardon发布了新的文献求助10
44秒前
54秒前
肾宝发布了新的文献求助10
59秒前
无花果应助whardon采纳,获得10
1分钟前
bkagyin应助肾宝采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
whardon发布了新的文献求助10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
link发布了新的文献求助10
2分钟前
严珍珍完成签到 ,获得积分10
2分钟前
热情的橙汁完成签到,获得积分10
2分钟前
2分钟前
Milton_z完成签到 ,获得积分0
2分钟前
whardon完成签到,获得积分10
2分钟前
3分钟前
Orange应助Luci采纳,获得50
3分钟前
3分钟前
科研通AI6应助虚拟的铃铛采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463340
求助须知:如何正确求助?哪些是违规求助? 4568082
关于积分的说明 14312411
捐赠科研通 4494015
什么是DOI,文献DOI怎么找? 2462065
邀请新用户注册赠送积分活动 1451025
关于科研通互助平台的介绍 1426267