A machine learning model for predicting blood concentration of quetiapine in patients with schizophrenia and depression based on real‐world data

奎硫平 单变量 富马酸奎硫平 单变量分析 萧条(经济学) 精神分裂症(面向对象编程) 治疗药物监测 统计 医学 机器学习 心理学 精神科 计算机科学 非定型抗精神病薬 数学 多元分析 抗精神病药 药品 多元统计 经济 宏观经济学
作者
Yupei Hao,Jinyuan Zhang,Lin Yang,Chunhua Zhou,Ze Yu,Fei Gao,Xin Hao,Xiaolu Pang,Jing Yu
出处
期刊:British Journal of Clinical Pharmacology [Wiley]
卷期号:89 (9): 2714-2725 被引量:4
标识
DOI:10.1111/bcp.15734
摘要

This study aimed to establish a prediction model of quetiapine concentration in patients with schizophrenia and depression, based on real-world data via machine learning techniques to assist clinical regimen decisions.A total of 650 cases of quetiapine therapeutic drug monitoring (TDM) data from 483 patients at the First Hospital of Hebei Medical University from 1 November 2019 to 31 August 2022 were included in the study. Univariate analysis and sequential forward selection (SFS) were implemented to screen the important variables influencing quetiapine TDM. After 10-fold cross validation, the algorithm with the optimal model performance was selected for predicting quetiapine TDM among nine models. SHapley Additive exPlanation was applied for model interpretation.Four variables (daily dose of quetiapine, type of mental illness, sex and CYP2D6 competitive substrates) were selected through univariate analysis (P < .05) and SFS to establish the models. The CatBoost algorithm with the best predictive ability (mean [SD] R2 = 0.63 ± 0.02, RMSE = 137.39 ± 10.56, MAE = 103.24 ± 7.23) was chosen for predicting quetiapine TDM among nine models. The mean (SD) accuracy of the predicted TDM within ±30% of the actual TDM was 49.46 ± 3.00%, and that of the recommended therapeutic range (200-750 ng mL-1 ) was 73.54 ± 8.3%. Compared with the PBPK model in a previous study, the CatBoost model shows slightly higher accuracy within ±100% of the actual value.This work is the first real-world study to predict the blood concentration of quetiapine in patients with schizophrenia and depression using artificial intelligent techniques, which is of significance and value for clinical medication guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Owen应助动听帆布鞋采纳,获得10
3秒前
pyt完成签到,获得积分20
4秒前
乐乐应助魔幻笑容采纳,获得10
5秒前
科研通AI5应助eureka采纳,获得10
5秒前
英俊的铭应助viento采纳,获得10
9秒前
哈哈哈发布了新的文献求助10
10秒前
11秒前
www完成签到,获得积分10
12秒前
Owen应助伶俐的血茗采纳,获得10
12秒前
14秒前
14秒前
14秒前
16秒前
Steven完成签到,获得积分10
18秒前
魔幻笑容发布了新的文献求助10
19秒前
甜滋滋发布了新的文献求助10
20秒前
eureka发布了新的文献求助10
20秒前
利奈唑胺完成签到,获得积分10
22秒前
23秒前
小刘完成签到 ,获得积分10
23秒前
wanci应助有点意思采纳,获得10
24秒前
量子星尘发布了新的文献求助10
26秒前
小凯同学完成签到,获得积分10
29秒前
Anyixx完成签到 ,获得积分10
31秒前
31秒前
xuan完成签到,获得积分10
32秒前
既白完成签到 ,获得积分10
32秒前
Lyue完成签到,获得积分10
32秒前
哭泣的映寒完成签到 ,获得积分10
33秒前
李冰洋发布了新的文献求助10
34秒前
35秒前
35秒前
李曼曼完成签到,获得积分10
36秒前
36秒前
务实的以松完成签到,获得积分10
40秒前
40秒前
李冰洋完成签到,获得积分10
42秒前
英俊的铭应助小小高采纳,获得10
43秒前
胖豆豆关注了科研通微信公众号
44秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3860843
求助须知:如何正确求助?哪些是违规求助? 3403149
关于积分的说明 10633549
捐赠科研通 3126227
什么是DOI,文献DOI怎么找? 1723924
邀请新用户注册赠送积分活动 830229
科研通“疑难数据库(出版商)”最低求助积分说明 779001