Machine-learning-assisted discovery of boron-doped graphene with high work function as an anode material for Li/Na/K-ion batteries

石墨烯 阳极 兴奋剂 工作职能 材料科学 离子 碱金属 吸附 杂原子 光电子学 纳米技术 掺杂剂 化学工程 化学 电极 工程类 物理化学 有机化学 图层(电子) 戒指(化学)
作者
Yi Luo,Haiyuan Chen,Jianwei Wang,Xiaobin Niu
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
卷期号:25 (17): 12200-12206 被引量:13
标识
DOI:10.1039/d3cp00669g
摘要

Work function (WF) modulation is a crucial descriptor for carbon-based electrodes in optoelectronic, catalytic, and energy storage applications. Boron-doped graphene is envisioned as a highly promising anode material for alkali metal-ion batteries (MIBs). However, due to the large structural space concerning various doping concentrations, the lack of both datasets and effective methods hinders the discovery of boron-doped graphene with a high WF that generally leads to strong adsorption. Herein, we propose a machine-learning-assisted approach to discover the target, where a Crystal Graph Convolutional Neural Network was developed to efficiently predict the WF for all possible configurations. As a result, the B5C27 structure is found to have the highest WF in the entire space containing 566 211 structures. In addition, it is revealed that the adsorption energy of alkali metals is linearly related to the WF of the substrate. Therefore, the screened B5C27 is investigated as an anode for Li/Na/K-ion batteries, and it possesses a higher theoretical specific capacity of 2262/2546/1131 mA h g-1 for Li/Na/K-ion batteries compared with that of pristine graphene and other boron-doped graphene. Our work provides an effective way to locate possible high-WF structures in heteroatom-doped systems, which may accelerate future screening of promising adsorbents for alkali metals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圆子完成签到,获得积分10
刚刚
peach发布了新的文献求助10
1秒前
histhb完成签到,获得积分10
1秒前
田様应助xixi采纳,获得10
2秒前
Dean应助QH采纳,获得100
2秒前
2秒前
古代猪完成签到,获得积分10
2秒前
鱼跃发布了新的文献求助10
2秒前
赘婿应助kk采纳,获得10
2秒前
2秒前
再慕发布了新的文献求助10
3秒前
diode完成签到,获得积分10
3秒前
橘子味雪糕完成签到,获得积分10
3秒前
孤独的惜梦完成签到,获得积分10
3秒前
passion发布了新的文献求助10
4秒前
4秒前
爱兔八哥完成签到,获得积分10
4秒前
董晨颖完成签到,获得积分10
4秒前
深情安青应助似风采纳,获得10
4秒前
5秒前
Tao完成签到,获得积分10
5秒前
KimJongUn完成签到,获得积分10
5秒前
6秒前
aimanqiankun55完成签到,获得积分10
6秒前
朱之欣完成签到,获得积分10
6秒前
peach完成签到,获得积分10
7秒前
123发布了新的文献求助10
7秒前
董瑞完成签到,获得积分20
7秒前
充电宝应助Desheng采纳,获得20
7秒前
田様应助田轲采纳,获得10
7秒前
LEI完成签到 ,获得积分20
8秒前
8秒前
营长完成签到,获得积分10
8秒前
再慕完成签到,获得积分10
8秒前
科研通AI5应助受伤的不正采纳,获得10
8秒前
9秒前
充电宝应助free采纳,获得10
9秒前
共享精神应助梓歆采纳,获得10
9秒前
10秒前
飘逸的翼完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4474060
求助须知:如何正确求助?哪些是违规求助? 3932763
关于积分的说明 12201828
捐赠科研通 3587490
什么是DOI,文献DOI怎么找? 1972185
邀请新用户注册赠送积分活动 1010022
科研通“疑难数据库(出版商)”最低求助积分说明 903617