Multiagent Reinforcement Learning With Graphical Mutual Information Maximization

计算机科学 强化学习 最大化 图形 相互信息 杠杆(统计) 人工智能 特征学习 特征(语言学) 代表(政治) 理论计算机科学 机器学习 数学优化 数学 哲学 政治学 法学 政治 语言学
作者
Shifei Ding,Wei Du,Ling Ding,Jian Zhang,Lili Guo,Bo An
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 19515-19524 被引量:18
标识
DOI:10.1109/tnnls.2023.3243557
摘要

Communication learning is an important research direction in the multiagent reinforcement learning (MARL) domain. Graph neural networks (GNNs) can aggregate the information of neighbor nodes for representation learning. In recent years, several MARL methods leverage GNN to model information interactions between agents to coordinate actions and complete cooperative tasks. However, simply aggregating the information of neighboring agents through GNNs may not extract enough useful information, and the topological relationship information is ignored. To tackle this difficulty, we investigate how to efficiently extract and utilize the rich information of neighbor agents as much as possible in the graph structure, so as to obtain high-quality expressive feature representation to complete the cooperation task. To this end, we present a novel GNN-based MARL method with graphical mutual information (MI) maximization to maximize the correlation between input feature information of neighbor agents and output high-level hidden feature representations. The proposed method extends the traditional idea of MI optimization from graph domain to multiagent system, in which the MI is measured from two aspects: agent features information and agent topological relationships. The proposed method is agnostic to specific MARL methods and can be flexibly integrated with various value function decomposition methods. Considerable experiments on various benchmarks demonstrate that the performance of our proposed method is superior to the existing MARL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Karen_Liu完成签到,获得积分10
刚刚
刚刚
1秒前
11发布了新的文献求助10
1秒前
阳光翩跹完成签到 ,获得积分10
2秒前
面包人完成签到,获得积分10
2秒前
温暖白凡发布了新的文献求助10
4秒前
4秒前
淡淡半莲发布了新的文献求助10
4秒前
上官若男应助79采纳,获得10
5秒前
5秒前
Jiayi完成签到,获得积分10
5秒前
ding应助拼搏的幻翠采纳,获得10
5秒前
冷傲初夏完成签到,获得积分10
5秒前
Cssss发布了新的文献求助10
6秒前
LL发布了新的文献求助10
6秒前
6秒前
suleisusu完成签到,获得积分10
7秒前
畅快代柔发布了新的文献求助30
7秒前
7秒前
8秒前
我是老大应助Zhangqiang采纳,获得10
8秒前
8秒前
9秒前
wuwu发布了新的文献求助10
9秒前
迟暮完成签到 ,获得积分10
9秒前
lulu完成签到 ,获得积分10
10秒前
10秒前
yu发布了新的文献求助10
11秒前
负责戎完成签到,获得积分10
12秒前
12秒前
13秒前
lili完成签到,获得积分20
14秒前
苹果白凡完成签到,获得积分10
14秒前
浮游应助蔡小熊笑嘻嘻采纳,获得10
14秒前
李健的粉丝团团长应助2rrd采纳,获得10
14秒前
火山上的鲍师傅完成签到,获得积分10
15秒前
长情的语风完成签到 ,获得积分10
16秒前
黄心悦发布了新的文献求助10
16秒前
pale发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271196
求助须知:如何正确求助?哪些是违规求助? 4429021
关于积分的说明 13786927
捐赠科研通 4307036
什么是DOI,文献DOI怎么找? 2363433
邀请新用户注册赠送积分活动 1359035
关于科研通互助平台的介绍 1321984