Target Specific De Novo Design of Drug Candidate Molecules with Graph Transformer-based Generative Adversarial Networks

化学 计算机科学 可药性 化学空间 生物信息学 药物发现 计算生物学 生成语法 小分子 人工智能 生物信息学 生物 基因 遗传学 生物化学
作者
Atabey Ünlü,Elif Çevrim,Ahmet Sarıgün,Hayriye Çelikbilek,Heval Ataş Güvenilir,Altay Koyaş,Deniz Kahraman,Abdurrahman Olğaç,Ahmet Süreyya Rifaioğlu,Tunca Doğan
出处
期刊:Cornell University - arXiv 被引量:4
标识
DOI:10.48550/arxiv.2302.07868
摘要

Discovering novel drug candidate molecules is one of the most fundamental and critical steps in drug development. Generative deep learning models, which create synthetic data given a probability distribution, have been developed with the purpose of picking completely new samples from a partially known space. Generative models offer high potential for designing de novo molecules; however, in order for them to be useful in real-life drug development pipelines, these models should be able to design target-specific molecules, which is the next step in this field. In this study, we propose DrugGEN, for the de novo design of drug candidate molecules that interact with selected target proteins. The proposed system represents compounds and protein structures as graphs and processes them via serially connected two generative adversarial networks comprising graph transformers. DrugGEN is trained using a large dataset of compounds from ChEMBL and target-specific bioactive molecules, to design effective and specific inhibitory molecules against the AKT1 protein, which has critical importance for developing treatments against various types of cancer. On fundamental benchmarks, DrugGEN models have either competitive or better performance against other methods. To assess the target-specific generation performance, we conducted further in silico analysis with molecular docking and deep learning-based bioactivity prediction. Results indicate that de novo molecules have high potential for interacting with the AKT1 protein structure in the level of its native ligand. DrugGEN can be used to design completely novel and effective target-specific drug candidate molecules for any druggable protein, given target features and a dataset of experimental bioactivities. Code base, datasets, results and trained models of DrugGEN are available at https://github.com/HUBioDataLab/DrugGEN
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
蒋瑞轩发布了新的文献求助10
1秒前
1秒前
爱撒娇的香烟完成签到,获得积分10
1秒前
大胖小子完成签到,获得积分10
1秒前
1秒前
2秒前
嘿嘿应助xxt采纳,获得10
2秒前
2秒前
Fayeah完成签到,获得积分10
3秒前
4秒前
w_tiger完成签到 ,获得积分10
4秒前
RO发布了新的文献求助10
4秒前
5秒前
搞怪雨琴发布了新的文献求助10
6秒前
淡定自中发布了新的文献求助10
6秒前
哦哦哦发布了新的文献求助10
6秒前
蒋瑞轩完成签到,获得积分10
7秒前
7秒前
8秒前
Qing发布了新的文献求助10
8秒前
8秒前
liu发布了新的文献求助10
8秒前
笑点低的项链完成签到 ,获得积分10
8秒前
科研通AI6应助一定发发发采纳,获得10
9秒前
务实擎汉完成签到,获得积分10
10秒前
jpc发布了新的文献求助10
10秒前
zyy完成签到,获得积分10
10秒前
Hilda007应助lxbu采纳,获得10
11秒前
VLH发布了新的文献求助10
12秒前
huiqin应助和谐白云采纳,获得10
12秒前
无机盐发布了新的文献求助10
12秒前
12秒前
福泽多完成签到,获得积分10
13秒前
15秒前
Hello应助嘻嘻采纳,获得10
15秒前
Qing完成签到,获得积分10
16秒前
16秒前
16秒前
tlm发布了新的文献求助10
17秒前
17秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501422
求助须知:如何正确求助?哪些是违规求助? 4597711
关于积分的说明 14460536
捐赠科研通 4531236
什么是DOI,文献DOI怎么找? 2483206
邀请新用户注册赠送积分活动 1466751
关于科研通互助平台的介绍 1439386